

	
			
			
			[image: ]	

	
				
			 
				
			
				
	
		
			
	 
	Part Number	Hot Search : 
			

						P191B			P6KE82E3			VS2TUJ			G4BC30K			SE2310			27C16			RS2506			1H101			

			
	
	Product Description

			
	
	Full Text Search




				


		
		
		


			




			
				 	
				To Download 
				S3F84BB Datasheet File

	
				 
				If you can't view the 
				Datasheet, Please click here to try to view without PDF Reader .	
				 



[image: ]


			
				
					





				　



			 



	

	



		



			
				


				


			



		
 
		





		  Datasheet File OCR Text:


		    s3c84bb/f84bb  8-bit cmos  microcontrollers  user's manual   revision 1   

   important notice    information in this publication has been carefully  checked and is believed to be entirely accurate at  the time of publication. samsung assumes no  responsibility, however, for possible errors or  omissions, or for any consequences resulting from  the use of the information contained herein.  samsung reserves the right to make changes in its  products or product specificat ions with the intent to  improve function or design at any time and without  notice and is not required to update this  documentation to reflect such changes.  this publication does not c onvey to a purchaser of  semiconductor devices described herein any license  under the patent rights of samsung or others.  samsung makes no warranty, representation, or  guarantee regarding the suitability of its products for  any particular purpose, nor does samsung assume  any liability arising out of the application or use of  any product or circuit and s pecifically disclaims any  and all liability, including without limitation any  consequential or incidental damages.  "typical" parameters can and do vary in different  applications. all operating parameters, including  "typicals" must be validated for each customer  application by the customer's technical experts.   samsung products are not designed, intended, or  authorized for use as components in systems  intended for surgical implant into the body, for other  applications intended to support or sustain life, or for  any other application in which the failure of the  samsung product could create a situation where  personal injury or death may occur.  should the buyer purchase or use a samsung  product for any such unintended or unauthorized  application, the buyer shall indemnify and hold  samsung and its officers, employees, subsidiaries,  affiliates, and distributors harmless against all  claims, costs, damages, expenses, and reasonable  attorney fees arising out of, either directly or  indirectly, any claim of per sonal injury or death that  may be associated with such unintended or  unauthorized use, even if such claim alleges that  samsung was negligent regarding the design or  manufacture of said product.  s3c84bb/f84bb 8-bit cmos microcontrollers  user's manual, revision 1  publication number: 20-s3-c84bb/f84bb-0800  ? 2000  samsung electronics  all rights reserved. no part of this publication may be r eproduced, stored in a retrieval system, or transmitted in  any form or by any means, electric  or mechanical, by photocopying, record ing, or otherwise, without the prior  written consent of samsung electronics.  samsung electronics' microcontroller business has been awarded full iso-14001  certification (bsi certificate no.  fm24653). all semiconductor products are  designed and manufactured in accordance with the highest quality standards and  objectives.   samsung electronics co., ltd.  san #24 nongseo-ri, kiheung- eup  yongin-city, kyunggi-do, korea  c.p.o. box #37, suwon 449-900  tel: (82)-(31)-209-1907  fax: (82)-(31)-209-1899  home page: http://www.intl.samsungsemi.com  printed in the republic of korea 

   s3c84bb/f84bb  microcontroller  iii  preface  the  s3c84bb/f84bb microcontroller user's manual  is designed for application designers and programmers who  are using the s3c84bb/84bb   microcontroller for application development.   it is organized in two main parts:   part i   programming model  part ii   hardware descriptions  part i contains software-related information to familiari ze you with the microcontroller's architecture, programming  model, instruction set, and interrupt  structure. it has six chapters:  chapter 1  product overview  chapter 2  address spaces  chapter 3  addressing modes  chapter 4  control registers  chapter 5  interrupt structure  chapter 6  instruction set chapter 1, "product overview," is a  high-level introduction to s3c84bb/f84bb   with general product descriptions,  as well as detailed information about individual  pin characteristics and pin circuit types.  chapter 2, "address spaces," describes program and data me mory spaces, the internal  register file, and register  addressing. chapter 2 also describes working register  addressing, as well as system stack and user-defined  stack operations.  chapter 3, "addressing modes," contains detailed descrip tions of the addressing modes  that are supported by the  s3c8-series cpu.  chapter 4, "control registers," contai ns overview tables for all mapped sy stem and peripheral control register  values, as well as detailed one-page descriptions in a  standardized format. you can use these easy-to-read,  alphabetically organized, register descriptions as  a quick-reference source when writing programs.  chapter 5, "interrupt structure," de scribes the s3c84bb/f84bb interrupt st ructure in detail and further prepares  you for additional information presented in the i ndividual hardware module descriptions in part ii.  chapter 6, "instruction set," describes  the features and conventions of the in struction set used for all s3c8-series  microcontrollers. several summary tables are presented fo r orientation and reference. detailed descriptions of  each instruction are presented in a standard format. each  instruction description includes one or more practical  examples of how to use the instruct ion when writing an application program.  a basic familiarity with the information in part i w ill help you to understand the hardware module descriptions in  part ii. if you are not yet familiar with the s3c-series  microcontroller family and are reading this manual for the  first time, we recommend that you first read chapters  1?3 carefully. then, briefly look over the detailed  information in chapters 4, 5, and 6. later, you can  reference the information in part i as necessary.  part ii "hardware descriptions," has detailed info rmation about specific hardware components of the  s3c84bb/f84bb microcontroller. also included in part ii  are electrical, mechanical, flash mcu, and development  tools data. it has 15 chapters:  chapter 7  clock circuit  chapter 8  reset and power-down  chapter 9  i/o ports  chapter 10  basic timer   chapter 11  8-bit timer a/b/c(0/1)  chapter 12  16-bit timer 1(0/1)  chapter 13  serial i/o port  chapter 14  uart(0/1)  chapter 15  10-bit a/d converter  chapter 16  8-bit d/a converter  chapter 17  pattern generation module  chapter 18  embedded flash memory interface  chapter 19  electrical data  chapter 20  mechanical data  chapter 21  development tools    two order forms are included at the back of this manual  to facilitate customer order for s3c84bb/f84bb  microcontrollers: the mask rom order form, and the ma sk option selection form. you can photocopy these  forms, fill them out, and then forward them to  your local samsung sales representative. 



   s3c84bb/f84bb  microcontroller  v  table of contents  part i ? programming model   chapter 1    product overview   s3c8-series mi crocontro llers ................................................................................................... ....................1-1  s3c84bb/f84bb mi crocontroller.................................................................................................. ................1-1  featur es ....................................................................................................................... .................................1-2  block di agram .................................................................................................................. .............................1-3  pin assi gnment ................................................................................................................. ............................1-4  pin descr iptions ............................................................................................................... .............................1-6  pin circ uits ................................................................................................................... .................................1-9  chapter 2    address spaces  overview....................................................................................................................... .................................2-1  program memo ry (r om)........................................................................................................... ....................2-2  register ar chitec ture.......................................................................................................... ...........................2-3  register page  pointer  (pp) ..................................................................................................... .............2-5  register  set 1 ................................................................................................................. ......................2-6  register  set 2 ................................................................................................................. ......................2-6  prime regist er s pace........................................................................................................... ................2-7  working r egisters .............................................................................................................. ..................2-8  using the regist er poin ters.................................................................................................... .............2-9  register a ddressi ng ............................................................................................................ ..........................2-11  common working register  area (c0h?c fh) .....................................................................................2-13   4-bit working regi ster addr essing .............................................................................................. ........2-14  8-bit working regi ster addr essing .............................................................................................. ........2-16  system and us er stack .......................................................................................................... ......................2-18  chapter 3    addressing modes  overview....................................................................................................................... .................................3-1  register addre ssing mode  (r)................................................................................................... ...................3-2  indirect register  addressing  mode (i r) ......................................................................................... ...............3-3  indexed addressi ng mode  (x).................................................................................................... ...................3-7  direct addre ss mode  (da) ....................................................................................................... .....................3-10  indirect addr ess mode  (ia) ..................................................................................................... ......................3-12  relative addr ess mode  (ra)..................................................................................................... ....................3-13  immediate  mode (i m) ............................................................................................................ ........................3-14   

   vi  s3c84bb/f84bb  microcontroller  table of contents  (continued)   chapter 4    control registers  overview ....................................................................................................................... ....................... 4-1   chapter 5    interrupt structure   overview ....................................................................................................................... ................................ 5-1  interrupt  types ................................................................................................................ ..................... 5-2  s3c84bb/f84bb inte rrupt stru cture .............................................................................................. ..... 5-3  interrupt vector  addresses ..................................................................................................... ............. 5-5  enable/disable interrupt  instructions  (ei, di) ................................................................................. ..... 5-7  system-level interrupt  control r egisters....................................................................................... ..... 5-7  interrupt processi ng control  points ............................................................................................ ......... 5-8  peripheral interrupt  control r egisters ......................................................................................... ........ 5-9  system mode regi ster ( sym) ..................................................................................................... ........ 5-10  interrupt mask r egister (imr) .................................................................................................. ........... 5-11  interrupt priority  register  (ipr).............................................................................................. .............. 5-12  interrupt request r egister  (irq)............................................................................................... .......... 5-14  interrupt pending  function  types............................................................................................... ......... 5-15  interrupt source  polling  sequence .............................................................................................. ........ 5-16  interrupt serv ice rout ines ..................................................................................................... .............. 5-16  generating interrupt  vector a ddresse s .......................................................................................... ..... 5-17  nesting of vect ored inte rrupts ................................................................................................. ............ 5-17  chapter 6    instruction set  overview ....................................................................................................................... ................................ 6-1  data  types..................................................................................................................... ...................... 6-1  register a ddressi ng............................................................................................................ ................. 6-1  addressi ng m odes ............................................................................................................... ................ 6-1  flags register  (flags)......................................................................................................... .............. 6-6  flag descr iptions .............................................................................................................. ................... 6-7  instruction se t nota tion....................................................................................................... ................. 6-8  condition  codes ................................................................................................................ .................. 6-12  instruction  descrip tions....................................................................................................... ................. 6-13   

   s3c84bb/f84bb  microcontroller  vii  table of contents  (continued)   part ii hardware descriptions   chapter 7    clock circuit   overview....................................................................................................................... .................................7-1  system clo ck circ uit ........................................................................................................... .................7-1  clock status duri ng power-dow n modes ........................................................................................... .7-2  system clock control  register  (clkco n) ......................................................................................... .7-3  chapter 8    reset and power-down  system reset ................................................................................................................... .............................8-1  overview ....................................................................................................................... ........................8-1  normal mode rese t operation.................................................................................................... .........8-1  hardware re set values.......................................................................................................... ..............8-2  power-dow n m odes ............................................................................................................... .......................8-5  stop m ode ...................................................................................................................... ......................8-5  idle mode ...................................................................................................................... ........................8-6  chapter 9    i/o ports  overview....................................................................................................................... .................................9-1  port data  regist ers ............................................................................................................ ..................9-2  port 0 ......................................................................................................................... ...........................9-3  port 1 ......................................................................................................................... ...........................9-5  port 2 ......................................................................................................................... ...........................9-7  port 3 ......................................................................................................................... ...........................9-10  port 4 ......................................................................................................................... ...........................9-13  port 5 ......................................................................................................................... ...........................9-17  port 6 ......................................................................................................................... ...........................9-20  port 7 ......................................................................................................................... ...........................9-21  port 8 ......................................................................................................................... ...........................9-23  chapter 10   basic timer  overview....................................................................................................................... .................................10-1  basic time r (b t)............................................................................................................... ....................10-1  basic timer control  register  (btcon) ........................................................................................... ....10-1  basic timer func tion descr iption............................................................................................... ..........10-3   

   viii  s3c84bb/f84bb  microcontroller  table of contents  (continued)   chapter 11   8-bit timer a/b/c(0/1)  8-bit ti mer a .................................................................................................................. ............................... 11-1  overview ....................................................................................................................... ....................... 11-1  function de scription ........................................................................................................... ................. 11-2  timer a control r egister (t acon) ............................................................................................... ...... 11-3  block di agram.................................................................................................................. .................... 11-4  8-bit ti mer b .................................................................................................................. ............................... 11-5  overview ....................................................................................................................... ....................... 11-5  block di agram.................................................................................................................. .................... 11-5  timer b control r egister (t bcon) ............................................................................................... ...... 11-6  timer b pulse widt h calcul ations ............................................................................................... ........ 11-7  8-bit timer  c (0/1 ) ............................................................................................................ ............................ 11-11  overview ....................................................................................................................... ....................... 11-11  timer c(0/1) control regist er (tccon0, t ccon1) .......................................................................... 11- 12  block di agram.................................................................................................................. .................... 11-13  chapter 12   16-bit timer 1(0/1)  overview ....................................................................................................................... ................................ 12-1  function de scription ........................................................................................................... ................. 12-2  timer 1(0/1) control regist er (t1con0,  t1con1) ............................................................................ 12-3  block di agram.................................................................................................................. .................... 12-6  chapter 13   serial i/o port  overview ....................................................................................................................... ................................ 13-1  programming  procedur e.......................................................................................................... ............ 13-1  sio control regi ster (s iocon) .................................................................................................. ........ 13-2  sio prescaler r egister (siops)................................................................................................. ......... 13-3  block di agram.................................................................................................................. .................... 13-3  serial i/o ti ming diagr ams..................................................................................................... ............. 13-4   

   s3c84bb/f84bb  microcontroller  ix  table of contents  (continued)   chapter 14   uart(0/1)  overview....................................................................................................................... .................................14-1  programming  procedur e .......................................................................................................... ............14-1  uart control register (u artcon0, uart con1) ..............................................................................14-2  uart interrupt pending  register  (uartp nd)...................................................................................... .14-3  uart data register  (udata0,  udata1)............................................................................................ ..14-4  uart baud rate data regist er (brdata0,  brdata1) .......................................................................14-4  baud rate ca lculat ions ......................................................................................................... ...............14-4  block di agram .................................................................................................................. .............................14-6  uart mode 0 func tion descr iption ............................................................................................... .........14-7  uart mode 1 func tion descr iption ............................................................................................... .........14-8  uart mode 2 func tion descr iption ............................................................................................... .........14-9  uart mode 3 func tion descr iption ............................................................................................... .........14-10  serial communication for multip rocessor confi gurations ....................................................................14-11   chapter 15   10-bit a/d converter  overview....................................................................................................................... .................................15-1  function de scription........................................................................................................... ...........................15-1  conversion  timing.............................................................................................................. ..................15-2  a/d converter control  register  (adaco n)........................................................................................ .15-2  internal referenc e voltage  levels .............................................................................................. .........15-4  conversion  timing.............................................................................................................. ..................15-4  internal a/d conv ersion pr ocedure.............................................................................................. ........15-5  chapter 16   10-bit d/a converter  overview....................................................................................................................... .................................16-1  d/a conversion control  register (a dacon) ......................................................................................1 6-2  d/a conversion data  register  (dadata) .......................................................................................... .16-2  block di agram .................................................................................................................. ....................16-3  chapter 17   pattern generation module   overview....................................................................................................................... .................................17-1  pattern gner ation  flow......................................................................................................... ................17-1 

   x  s3c84bb/f84bb  microcontroller  table of contents  (continued)   chapter 18   embedded flash memory interface  overview ....................................................................................................................... ................................ 18-1  flash memory cont rol regi sters ................................................................................................. .............. 18-3  sector  erase ................................................................................................................... .............................. 18-5  progra mming .................................................................................................................... ............................ 18-9  data prot ection ................................................................................................................ ............................. 18-12  chapter 19   electrical data     overview ....................................................................................................................... ....................... 19-1  chapter 20   mechanical data  overview ....................................................................................................................... ....................... 20-1  chapter 21   development tools   overview ....................................................................................................................... ................................ 21-1  shine .......................................................................................................................... .......................... 21-1  sama assembler ................................................................................................................. ................ 21-1  sasm88 ......................................................................................................................... ...................... 21-1  hex2rom ........................................................................................................................ ................... 21-1  target  boards .................................................................................................................. .................... 21-1  tb84bb target  board............................................................................................................ .............. 21-3  idle led ....................................................................................................................... ...................... 21-5  stop led ....................................................................................................................... .................... 21-5     

   s3c84bb/f84bb  microcontroller  xi  list of figures  figure title page  number  number   1-1 s3c84bb/f84bb  block diagr am ...............................................................................1-3  1-2  s3c84bb/f84bb pin a ssignment (80- qfp)..............................................................1-4  1-3  s3c84bb/f84bb pin a ssignment (80- tqfp) ...........................................................1-5  1-4  pin circuit type b ( resetb ) ......................................................................................1-9  1-5 pin circui t type  c.......................................................................................................1- 9  1-6  pin circuit type d (p0, p1, p2 except  p2.3, p3, p8 except  p8.4, p8.5) ...................1-10  1-7  pin circuit type d-1  (p4, p8.4,  p8,5) .........................................................................1-10  1-8  pin circuit ty pe d-2 (p2. 3).........................................................................................1-11  1-9  pin circuit type  e (adc0-adc7 )...............................................................................1-11  1-10 pin circuit  type f (p 6) ...............................................................................................1-12   1-11  pin circuit type  g (p5.7-p5 .4) ...................................................................................1-12    2-1 program memory  address s pace .............................................................................. 2-2  2-2 internal register  file organiza tion............................................................................. 2-4  2-3 register page  pointer ( pp) ........................................................................................2-5  2-4  set 1, set 2, pr ime area regi ster ..............................................................................2-7  2-5  8-byte working regist er areas (s lices) .....................................................................2-8  2-6  contiguous 16-byte work ing register  block .............................................................2-9  2-7  non-contiguous 16-byte wo rking register  block .....................................................2-10  2-8 16-bit regist er pair ....................................................................................................2-1 1  2-9 register file  addressi ng ............................................................................................2-12  2-10  common working r egister ar ea................................................................................ 2-13  2-11  4-bit working regi ster addre ssing ............................................................................ 2-15  2-12  4-bit working register  addressing ex ample .............................................................2-15  2-13  8-bit working regi ster addre ssing ............................................................................ 2-16  2-14  8-bit working register  addressing ex ample .............................................................2-17  2-15 stack o perati ons ........................................................................................................2- 18    3-1 register a ddressing ...................................................................................................3-2  3-2 working register  addressi ng.....................................................................................3-2  3-3  indirect register addre ssing to regist er file .............................................................3-3  3-4  indirect register addre ssing to program  memory .....................................................3-4  3-5  indirect working register a ddressing to regi ster f ile ..............................................3-5  3-6  indirect working register addre ssing to program or  data memo ry ..........................3-6  3-7  indexed addressing to  register  file .......................................................................... 3-7  3-8  indexed addressing to program or da ta memory with  short offs et ..........................3-8  3-9  indexed addressing to progr am or data  memory ......................................................3-9  3-10  direct addressing fo r load instruct ions ..................................................................... 3-10  3-11  direct addressing for ca ll and jump inst ructions ......................................................3-11  3-12 indirect  addressi ng.....................................................................................................3- 12  3-13 relative a ddressing ....................................................................................................3-1 3  3-14 immediate a ddressing ................................................................................................3-14   

   xii  s3c84bb/f84bb  microcontroller  list of figures  (continued)   figure title page  number  number   4-1   register descr iption form at ...................................................................................... 4-4    5-1 s3c8-series in terrupt ty pes ..................................................................................... 5-2  5-2 s3c84bb/f84bb inte rrupt struct ure ......................................................................... 5-4  5-3  rom vector a ddress ar ea ........................................................................................ 5-5  5-4 interrupt func tion diagr am ........................................................................................ 5-8  5-5  system mode regi ster (sym ) ................................................................................... 5-10  5-6  interrupt mask r egister (i mr) ................................................................................... 5-11  5-7 interrupt request  priority  groups .............................................................................. 5-12  5-8 interrupt priority  register (i pr) ................................................................................. 5-13  5-9  interrupt request r egister (i rq)............................................................................... 5-14    6-1  system flags regi ster (fla gs) ............................................................................... 6-6    7-1  main oscillator circuit (cryst al or ceramic  oscillato r) .............................................. 7-1  7-2  system clock ci rcuit diagr am ................................................................................... 7-2  7-3  system clock control  register (c lkcon) ............................................................... 7-3    9-1  port 0 control r egister (p0c on) .............................................................................. 9-4  9-2  port 1 control r egister (p1c on) .............................................................................. 9-6  9-3  port 2 high-byte contro l register (p 2conh) ........................................................... 9-8  9-4  port 2 low-byte contro l register (p 2conl) ............................................................ 9-9  9-5  port 3 high-byte contro l register (p 3conh) ........................................................... 9-11  9-6  port 3 low-byte contro l register (p 3conl) ............................................................ 9-12  9-7  port 4 high-byte contro l register (p 4conh) ........................................................... 9-14  9-8  port 4 low-byte contro l register (p 4conl) ............................................................ 9-15  9-9  port 4 interrupt contro l register (p 4int) .................................................................. 9-16  9-10  port 4 interrupt pending  register (p4i ntpnd) ......................................................... 9-16  9-11  port 5 high-byte contro l register (p 5conh) ........................................................... 9-18  9-12  port 5 low-byte contro l register (p 5conl) ............................................................ 9-19  9-13  port 7 control r egister (p7c on) .............................................................................. 9-22  9-14  port 8 high-byte contro l register (p 8conh) ........................................................... 9-24  9-15  port 8 low-byte contro l register (p 8conl) ............................................................ 9-25  9-16  port 8 interrupt pending  register (p8i ntpnd) ......................................................... 9-26   

   s3c84bb/f84bb  microcontroller  xiii  list of figures  (continued)    page  title  page  number  number   10-1  basic timer control  register (b tcon) .....................................................................10-2  10-2  basic timer bl ock diagr am ........................................................................................10-4    11-1  timer a control r egister (tac on)............................................................................ 11-3  11-2  timer a functional  block di agram............................................................................. 11-4  11-3  timer b functional  block di agram............................................................................. 11-5  11-4  timer b control r egister (tbc on)............................................................................ 11-6  11-5  timer b data register s (tbdatah, tb datal) .......................................................11-6  11-6  timer b output flip-flop  waveforms in r epeat mode ..............................................11-8  11-7  timer c(0/1) control regi ster (tccon0,  tccon1) .................................................11-12  11-8  timer c(0/1) functi onal block di agram ..................................................................... 11-13    12-1  timer 1(0/1) control regi ster (t1con0,  t1con1) ...................................................12-4  12-2  timer a and timer 1(0/1) p ending register  (tintpnd) ...........................................12-5  12-3  timer 1(0/1) functi onal block di agram...................................................................... 12-6    13-1  sio module control r egister (sio con).................................................................... 13-2  13-2  sio prescaler r egister (s iops) ................................................................................13-3  13-3 sio functional  block diagr am ................................................................................... 13-3  13-4  sio timing in transmit/receive mode  (tx at falling edge,  siocon.4=0 ) ................13-4  13-5  sio timing in transmit/receive mode  (tx at rising edge,  siocon.4=1 ).................13-4  13-6  sio timing in receive-only  mode (rising  edge start) ..............................................13-5    14-1  uart control register  (uartcon0, ua rtcon1) .................................................14-2  14-2  uart interrupt pending  register (u artpnd) ..........................................................14-3  14-3  uart data register  (udata0,  udata1) .................................................................14-4  14-4  uart baud rate data regi ster (brdata0,  brdata1) ..........................................14-4  14-5 uart functional  block diagr am................................................................................ 14-6  14-6  timing diagram for uart  mode 0 oper ation ............................................................14-7  14-7  timing diagram for uart  mode 1 oper ation ............................................................14-8  14-8  timing diagram for uart  mode 2 oper ation ............................................................14-9  14-9  timing diagram for uart  mode 3 oper ation ............................................................14-10  14-10  connection example for multiprocesso r serial data co mmunicati ons ..................... 14-12    15-1  a/d converter control  register (a dacon) ...............................................................15-2  15-2  a/d converter data regist er (addatah,  addatal) ..............................................15-3  15-3  a/d converter ci rcuit diagr am................................................................................... 15-3  15-4 a/d converter  timing diagr am .................................................................................. 15-4  15-5  recommended a/d converter circui t highest absolute  accura cy............................ 15-5    16-1  d/a converter control  register (a dacon) ...............................................................16-2  16-2  d/a converter data  register (d adata) ....................................................................16-2  16-3  d/a converter ci rcuit diagr am................................................................................... 16-3 

   xiv  s3c84bb/f84bb  microcontroller  list of figures  (concluded)    page  title  page  number  number   17-1 pattern gener ation fl ow ............................................................................................ 17-1  17-2  pg control regi ster (pgc on) .................................................................................. 17-2  17-3 pattern generation  circuit di agram........................................................................... 17-2    18-1  flash memory control  register (f mcon) ................................................................ 18-3  18-2  flash memory user programmi ng enable register  (fmusr ).................................. 18-3  18-3  sectors in user  program  mode ................................................................................. 18-5  18-4 sectors erase  wave fo rm......................................................................................... 18-6  18-5 program wa ve form .................................................................................................. 18-9    19-1  input timing for external interrupts  (ports 4, port 8. 5, port  8.6) ............................... 19-5  19-2  input timing for  reset .............................................................................................. 19-5  19-3  stop mode release timing initiated by  reset ......................................................... 19-6  19-4  stop mode release timing in itiated by in terrupts ..................................................... 19-7  19-5  clock timing measurement at x in ............................................................................ 19-11  19-6 operating vo ltage range .......................................................................................... 19-11    20-1  s3c84bb/f84bb 80-qfp standard pack age dimensions(in  millimeter s) ............... 20-1  20-2  s3c84bb/f84bb 80-tqfp standard pa ckage dimensions(in  millimeter s)............. 20-2    21-1  smds product confi guration (smd s2+)................................................................... 21-2  21-2  tb84bb target boar d configurat ion ......................................................................... 21-3  21-3  40-pin connectors for tb84bb  (s3c84bb, 80-qf p package) ................................ 21-6  21-4  tb84bb cable for  80-qfp adapt er........................................................................... 21-6     

   s3c84bb/f84bb  microcontroller  xv  list of tables  table title page  number  number   1-1  s3c84bb/f84bb pin de scriptions ( 80-qfp) ............................................................1-6    2-1 s3c84bb/f84bb regi ster type su mmary................................................................ 2-3    4-1   set 1  regist ers ........................................................................................................... 4-1  4-2   set 1, bank  0 register s..............................................................................................4-2  4-3   set 1, bank  1 register s..............................................................................................4-3    5-1 interrupt  vectors .........................................................................................................5 -6  5-2  interrupt control r egister over view ........................................................................... 5-7  5-3  interrupt source contro l and data regi sters .............................................................5-9    6-1 instruction  group summa ry........................................................................................6-2  6-2 flag notation  conventi ons .........................................................................................6-8  6-3 instruction se t symbols..............................................................................................6-8  6-4 instruction nota tion convent ions ............................................................................... 6-9  6-5 opcode quick  referenc e ...........................................................................................6-10  6-6 condition  codes .........................................................................................................6-1 2    8-1  S3F84BB set 1 register values after  reset ............................................................8-2  8-2  S3F84BB set 1, bank 0 register values after  reset ...............................................8-3  8-3  S3F84BB set 1, bank 1 register values after  reset ...............................................8-4    9-1  s3c84bb/f84bb port c onfiguration ov erview .........................................................9-1  9-2  port data regi ster summa ry......................................................................................9-2    14-1  commonly used baud rates generat ed by brdata0,  brdata1 ..........................14-5    16-1  dadata setting to g enerate analog  voltage ...........................................................16-3     

   xvi  s3c84bb/f84bb  microcontroller  list of tables  (continued)   table title page  number  number  18-1  command in user  program m ode ............................................................................. 18-2    19-1 absolute maxi mum rati ngs ....................................................................................... 19-2  19-2 d.c. electrical  characterist ics ................................................................................... 19-2  19-3 a.c. electrical  characterist ics ................................................................................... 19-5  19-4 input/output  capacitanc e .......................................................................................... 19-6  19-5  data retention supply  voltage in st op mode ........................................................... 19-6  19-6  a/d converter electric al characteri stics ................................................................... 19-8  19-7  d/a converter electric al characteri stics ................................................................... 19-8  19-8  flash memory d.c. electr ical characte ristics ........................................................... 19-9  19-9  flash memory a.c. electr ical characte ristics ........................................................... 19-9  19-10  main oscillator frequency (f osc1 )............................................................................. 19-10  19-11  main oscillator clock stabilization time (t st1 ).......................................................... 19-10    21-1  power selection se ttings for tb 84bb ....................................................................... 21-4  21-2  using single header pins as the input  path for external tr igger sour ces ............... 21-5     

   s3c84bb/f84bb  microcontroller  xvii  list of programming tips  description   page    number   chapter 2:  address spaces  using the page pointer for  ram clear (page  0, p age 1).......................................................................... ....2-5  setting the regist er poin ters .................................................................................................. ......................2-9  using the rps to calculate the su m of a series  of regi sters .................................................................... ..2-10  addressing the common wo rking regist er area .................................................................................... .....2-14  standard stack operations  using push  and pop ................................................................................... ...2-19    chapter 11:  8-bit timer  a/b/c(0/1)   to generate 38 khz, 1/3d uty signal th rough p2 .4 ................................................................................ .....11-9  to generate a one puls e signal th rough p2.4 .................................................................................... .......11-10  using the  timer  a.............................................................................................................. ............................11-14  using the  timer  b.............................................................................................................. ............................11-15  using the ti mer c( 0/1) ......................................................................................................... .........................11-16    chapter 12:  16-bit timer 1(0/1)  using the ti mer 1( 0)........................................................................................................... ...........................12-7    chapter 13:  serial i/o port   use internal clock to trans mit and receive  serial  data......................................................................... .....13-5    chapter 15:  10-bit a/d converter  configuring a/ d conver ter ...................................................................................................... ......................15-6    chapter 17:  pattern generation module   using the pattern  generation................................................................................................... .....................17-3    chapter 18:  embedded flash memory interface   sector  erase................................................................................................................... ...............................18-7  progra mming .................................................................................................................... .............................18-10  option sector programming(hard lock pr otection in user  program m ode)................................................ 18-13 



   s3c84bb/f84bb  microcontroller  xix  list of register descriptions  register  full register name  page  identifier  number  adacon  a/d, d/a converte r control r egister ......................................................................... 4-5  brdata0  uart0 baud rate  data regi ster .............................................................................. 4-6  brdata1  uart1 baud rate  data regi ster .............................................................................. 4-7  btcon  basic timer c ontrol regi ster ..................................................................................... 4-8  clkcon system clock  control regi ster .................................................................................. 4-9  flags system flags  regist er ............................................................................................... 4-10  fmcon  flash memory c ontrol regi ster ................................................................................. 4-11  imr interrupt ma sk regist er .............................................................................................. 4-12  iph instruction pointe r (high by te) .................................................................................. 4-13  ipl instruction pointe r (low by te) ................................................................................... 4-13  ipr interrupt priori ty regist er ........................................................................................... 4-14  irq interrupt reques t regist er ......................................................................................... 4-15  p0con  port 0 cont rol regist er............................................................................................... 4-1 6  p1con  port 1 cont rol regist er............................................................................................... 4-1 7  p2conh  port 2 control regi ster (high  byte)............................................................................ 4-18  p2conl  port 2 control r egister (low  byte) ............................................................................ 4-19  p3conh  port 3 control regi ster (high  byte)............................................................................ 4-20  p3conl  port 3 control r egister (low  byte) ............................................................................ 4-21  p4conh  port 4 control regi ster (high  byte)............................................................................ 4-22  p4conl  port 4 control r egister (low  byte) ............................................................................ 4-23  p4int  port 4 interrupt  control regi ster ................................................................................ 4-24  p4intpnd  port 4 interrupt  pending regi ster............................................................................... 4-25  p5conh  port 5 control regi ster (high  byte)............................................................................ 4-26  p5conl  port 5 control r egister (low  byte) ............................................................................ 4-27  p7con  port 7 cont rol regist er............................................................................................... 4-2 8  p8conh  port 8 control regi ster (high  byte)............................................................................ 4-29  p8conl  port 8 control r egister (low  byte) ............................................................................ 4-30  p8intpnd  port 8 interrupt  pending regi ster............................................................................... 4-31  pgcon pattern generation  control regi ster.......................................................................... 4-32   

   xx  s3c84bb/f84bb  microcontroller  list of register descriptions  (continued)   register  full register name  page  identifier  number   pp register page  pointer ................................................................................................4-33  rp0 register  pointer  0 .......................................................................................................4- 34  rp1 register  pointer  1 .......................................................................................................4- 34  siocon sio cont rol regi ster ..................................................................................................4- 35  siops sio prescale r regist er...............................................................................................4-36   sph stack pointer  (high byte ) ...........................................................................................4-37  spl stack pointer  (low byte ) ............................................................................................4-37  sym system mode  register ...............................................................................................4-38  t1con0  timer 1(0) c ontrol regi ster ........................................................................................4-39  t1con1  timer 1(1) c ontrol regi ster ........................................................................................4-40  tacon  timer a cont rol regist er ............................................................................................4-41  tbcon  timer b cont rol regist er ............................................................................................4-42  tccon0  timer c(0) c ontrol regi ster .......................................................................................4-43  tccon1  timer c(1) c ontrol regi ster .......................................................................................4-44  tintpnd  timer a,1 interr upt pending r egister .........................................................................4-45  uartcon0 uart0 cont rol regist er.............................................................................................4-4 6  uartcon1 uart1 cont rol regist er.............................................................................................4-4 7  uartpnd uart1(0) p ending regist er ...................................................................................... 4-48   

   s3c84bb/f84bb  microcontroller  xxi  list of instruction descriptions  instruction  full register name  page  mnemonic  number  adc add with  carry ............................................................................................................ 6 -14  add   add ....................................................................................................................... ...... 6-15  and   logica l and ............................................................................................................... 6-16  band   bi t and.................................................................................................................. ..... 6-17  bcp   bit  compar e ............................................................................................................... 6-18  bitc   bit co mplem ent.......................................................................................................... 6 -19  bitr bit reset ................................................................................................................. .... 6-20  bits   bit set .................................................................................................................. ....... 6-21  bor   bi t or .................................................................................................................... ..... 6-22  btjrf   bit test, jump  relative on  false ............................................................................... 6-23  btjrt   bit test, jump  relative on  true................................................................................. 6-24  bxor   bit xor.................................................................................................................. ..... 6-25  call   call  procedur e........................................................................................................... . 6-26  ccf   complement  carry fl ag ............................................................................................. 6-27  clr   clear ..................................................................................................................... ...... 6-28  com   comp lement ............................................................................................................... 6 -29  cp   co mpare.................................................................................................................... . 6-30  cpije compare, incremen t, and jump on  equal ................................................................. 6-31  cpijne   compare, incremen t, and jump on n on-equal ......................................................... 6-32  da   decima l adju st ........................................................................................................... 6- 33  dec   de crement................................................................................................................. . 6-35  decw   decrem ent word ........................................................................................................ 6-3 6  di disable in terrupts ....................................................................................................... 6-3 7  div   divide  (unsi gned)....................................................................................................... 6- 38  djnz   decrement and ju mp if non- zero.............................................................................. 6-39  ei   enable in terrupt s ........................................................................................................ 6- 40  enter   enter ................................................................................................................... ........ 6-41  exit   exit..................................................................................................................... ......... 6-42  idle   idle  operat ion........................................................................................................... .. 6-43  inc incr ement .................................................................................................................. . 6-44  incw   increm ent wo rd.......................................................................................................... 6 -45  iret interr upt re turn .......................................................................................................... 6-46  jp   jump....................................................................................................................... .... 6-47  jr   jump  relative............................................................................................................. 6 -48  ld   load....................................................................................................................... ..... 6-49  ldb   load  bit .................................................................................................................. .... 6-51   

   xxii  s3c84bb/f84bb  microcontroller  list of instruction descriptions  (continued)   instruction  full register name  page  mnemonic  number  ldc/lde   load memo ry........................................................................................................... ...6-52  ldcd/lded   load memory  and decrem ent .................................................................................... 6-54  ldci/ldei load memory  and increm ent...................................................................................... 6-55  ldcpd/ldepd  load memory wi th pre-decr ement............................................................................. 6-56  ldcpi/ldepi  load memory wi th pre-incr ement .............................................................................. 6-57  ldw load  word .................................................................................................................. 6-58  mult   multiply  (unsi gned) .....................................................................................................6 -59  next   next..................................................................................................................... ........6-60  nop   no o peratio n .............................................................................................................. 6-61  or   logi cal  or ................................................................................................................. .6-62  pop   pop from  stack ...........................................................................................................6 -63  popud   pop user sta ck (decrement ing)................................................................................. 6-64  popui   pop user sta ck (increment ing) .................................................................................. 6-65  push   push  to stack............................................................................................................ ..6-66  pushud   push user sta ck (decrement ing) ............................................................................... 6-67  pushui   push user st ack (increm enting) ................................................................................6-68  rcf   reset ca rry fl ag.........................................................................................................6 -69  ret   re turn .................................................................................................................... .....6-70  rl   rota te left ................................................................................................................ ..6-71  rlc   rotate left  through ca rry ........................................................................................... 6-72  rr   rotate  right............................................................................................................... .6-73  rrc   rotate right  through ca rry......................................................................................... 6-74  sb0   select  bank 0............................................................................................................. .6-75  sb1   select  bank 1............................................................................................................. .6-76  sbc   subtract  with ca rry ..................................................................................................... 6- 77  scf   set ca rry fl ag............................................................................................................ .6-78  sra shift right  arithmetic ..................................................................................................6-7 9  srp/srp0/srp1   set  register  pointer............................................................................................ ........6-80  stop   stop  operat ion........................................................................................................... .6-81  sub   s ubtract .................................................................................................................. ....6-82  swap   swap  nibbl es............................................................................................................. .6-83  tcm   test complem ent under ma sk ................................................................................... 6-84  tm   test under  mask .........................................................................................................6-8 5  wfi   wait fo r inte rrupt ........................................................................................................ .6-86  xor   logical excl usive or ..................................................................................................6-87    

 s3c84bb/f84bb  pr oduct overview     1-1   1  product overview  s3c8-series microcontrollers  samsung's s3c8-series of 8-bit single-chip cmos microc ontrollers offers a fast and efficient cpu, a wide range  of integrated peripherals, and various mask-programm able rom sizes. the major cpu features are:  ?  efficient register-oriented architecture  ?  selectable cpu clock sources  ?  idle and stop power-down mode released by interrupt or reset  ?  built-in basic timer with watchdog function  a sophisticated interrupt structure recognizes up to eight  interrupt levels. each level can have one or more  interrupt sources and vectors. fast interrupt processing  (within a minimum of four cpu clocks) can be assigned to  specific interrupt levels.   s3c84bb/f84bb microcontroller  the s3c84bb/f84bb single-chip cmos microcontrolle rs are fabricated using the highly advanced cmos  process, based on samsung?s latest cpu architecture.   the s3c84bb is a microcontroller with a 64k-byte mask-programmable rom embedded.   the S3F84BB is a microcontroller with a 64k-byte full-flash rom embedded.  using a proven modular design approach, sa msung engineers have successfully developed the   s3c84bb/f84bb by integrating the following per ipheral modules with the powerful sam8 core:  ?  nine programmable i/o ports, including eight 8-bit  ports and one 6-bit ports, for a total of 70 pins.  ? ten   bit-programmable pins for external interrupts.  ?  one 8-bit basic timer for oscillation stab ilization and watchdog function (system reset).  ?  four 8-bit timer/counter and two 16-bit ti mer/counter with selectable operating modes.  ?  tow asynchronous uart  ?  one synchronous sio  ?  one 8-bit d/a converter  ?  8-channel a/d converter  the s3c84bb/f84bb is versatile microcontroller for  cd-rom and adc application, et c. they are currently  available in 80-pin qfp and 80-pin tqfp package.    

 product overview   s3c84bb/f84bb  1-2     features  cpu  ?   sam88rc cpu core  memory  ?   2064-bytes internal register file  ?   64k-bytes internal program memory  - s3c84bb: mask rom  - S3F84BB: flash type memory  oscillation sources  ?  crystal, ceramic  ?   cpu clock divider (1/1, 1/2, 1/8, 1/16)  instruction set  ?  78 instructions  ?   idle and stop instructions added for power- down modes  instruction execution time  ?   400 ns at 10-mhz f osc  (minimum)  interrupts  ?   24 interrupt sources with 24 vector.  ?   8 level, 24 vector interrupt structure   i/o ports  ?   total 70 bit-programmable pins  timers and timer/counters   ?   one programmable 8-bit basic timer ( bt ) for  oscillation stabilization control or watchdog-timer  function.  ?   one 8-bit timer/counter ( timer a ) with three  operating modes; interval mode, capture mode  and pwm mode.  ?   one 8-bit timer/counter ( timer b ) carrier  frequency (or pwm) generator.  ?   two 8-bit timer with pwm mode ( timer c0,c1 )  ?   two 16-bit capture timer/counter ( timer 10,11 )  with two operating modes; interval mode,  capture mode for pulse period or duty.    a/d converter  ?  10-bit resolution  ?   eight analog input channels   ?   20us conversion speed at 10mhz f adc  clock.  d/a converter  ?  8-bit d/a converter  ?  r/2r resistor method  ?    one d/a output (daout)  asynchronous uart  ?  full duplex 2 channels uarts  ?  programmable baud rate  ?     supports serial dat a transmit/receive operations  with 8-bit, 9-bit in uart   synchronous sio  ?  programmable baud rate  ?  one synchronous serial i/o module  pattern generation module  ?    pattern generation module triggered by timer  match signal and s/w.  operating temperature range  ?     -25  c to + 85  c  operating voltage range  ?   2.7 v  to  5.5 v at 10mhz f osc   package type  ?   80 pin qfp, 80 pin tqfp  

 s3c84bb/f84bb  pr oduct overview     1-3   block diagram  i/o port and interrupt control sam88rc cpu 64k-byte rom 2064-byte ram osc/resetb 8-bit basic timer 8-bit timer /countera,b 8-bit timer/ counterc0,c1 16-bit timer /counter10,11 port 0 port 1 a/d port 2 p2.0-p2.7 x in x out resetb p2.7/taout p2.6/tacap p2.5/tack p3.6/tcout1 p2.4/tbout p3.4/t1out0 p1.0-p1.7 p0.0-p0.7 av ref av ss port 3 p3.0-p3.7 port 4 p4.0-p4.7/ int0~int7 port 5 p5.0-p5.7 port 6 p6.0-p6.7 sio/ uart0,1 pg p3.7/tcout0 p0.0~p0.7/ pg0~pg7 p3.2/t1cap0 p3.0/t1ck0 p3.5/t1out1 p3.3/t1cap1 p3.1/t1ck1 p2.2/sck p2.1/si p2.0/so p5.3/rxd0 p5.2/txd0 p5.1/rxd1 p5.0/txd1 port 8 port 7 d/a p7.0-p7.7/ adc0~adc7 p8.0-p8.5/ int8,int9 p2.3/ daout   figure 1-1. s3c84bb/f84bb block diagram 

 product overview   s3c84bb/f84bb  1-4     pin assignment   p1.7 p1.6 p1.5 p1.4 p1.3 p1.2 p1.1 p1.0    p0.7/pg7 p0.6/pg6 p0.5/pg5 p0.4/pg4 p0.3/pg3 p0.2/pg2 p0.1/pg1 p0.0/pg0 p2.7/taout p2.6/tacap p2.5/tack p2.4/tbpwm p2.3/daout p2.2/sck p2.1/si p2.0/so p5.7 p5.6/sdat p5.5/sclk vdd1 vss1 xout xin test p5.4 p5.3/rxd0 resetb p5.2/txd0 p5.1/rxd1 p5.0/txd1 p3.7/tcout1 p3.6/tcout0 s3c84bb/f84bb (80-qfp-1420c) 64 63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 p3.5/t1out1 p3.4/t1out0 p3.3/t1cap1 p3.2/t1cap0 p3.1/t1ck1 p3.0/t1ck0 p4.7/int7 p4.6/int6 p4.5/int5 p4.4/int4 p4.3/int3 p4.2/int2 p4.1/int1 p4.0/int0 p7.7/adc7 p7.6/adc6 p8.0 p8.1 p8.2 p8.3 p8.4/int8 p8.5/int9 p6.0 p6.1 p6.2 p6.3 p6.4 vdd2 vss2 p6.5 p6.6 p6.7 p7.0/adc0 p7.1/adc1 p7.2/adc2 p7.3/adc3 avss avref p7.4/adc4 p7.5/adc5   figure 1-2. s3c84bb/f84bb pin assignment (80-qfp) 

 s3c84bb/f84bb  pr oduct overview     1-5   pin assignment  s3c84bb/f84bb (80-tqfp-1212) p8.1 p8.0 p1.7 p1.6 p1.5 p1.4 p1.3 p1.2 p1.1 p1.0    p0.7/pg7 p0.6/pg6 p0.5/pg5 p0.4/pg4 p0.3/pg3 p0.2/pg2 p0.1/pg1 p0.0/pg0 p2.7/taout p2.6/tacap p2.5/tack p2.4/tbpwm p2.3/daout p2.2/sck p2.1/si p2.0/so p5.7 p5.6/sdat p5.5/sclk vdd1 vss1 xout xin test p5.4 p5.3/rxd0 resetb p5.2/txd0 p5.1/rxd1 p5.0/txd1 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 p3.7/tcout1 p3.6/tcout0 p3.5/t1out1 p3.4/t1out0 p3.3/t1cap1 p3.2/t1cap0 p3.1/t1ck1 p3.0/t1ck0 p4.7/int7 p4.6/int6 p4.5/int5 p4.4/int4 p4.3/int3 p4.2/int2 p4.1/int1 p4.0/int0 p7.7/adc7 p7.6/adc6 p7.5/adc5 p7.4/adc4 p8.2 p8.3 p8.4/int8 p8.5/int9 p6.0 p6.1 p6.2 p6.3 p6.4 vdd2 vss2 p6.5 p6.6 p6.7 p7.0/adc0 p7.1/adc1 p7.2/adc2 p7.3/adc3 avss avref   figure 1-3. s3c84bb/f84bb  pin assignment (80-tqfp) 

 product overview   s3c84bb/f84bb  1-6     pin descriptions  table 1-1. s3c84bb/f84bb pin descriptions (80-qfp)  pin  name  pin  type  pin  description  circuit type  pin  number  share  pins  p0.0 - p0.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  alternately, p0.0-p0.7 can be used as the pg  output port (pg0-pg7).  d 80-73 pg0-pg7  p1.0 - p1.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  d 72-65   p2.0 - p2.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  alternately, p2.0~p2.7 can be used as i/o for  timera, timerb, d/a, sio  d,d-2 8-1  so  si  sck  daout  tbpwm  tack  tacap  taout  p3.0 - p3.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  alternately, p3.0~p3.7 can be used as i/o for  timerc0/c1, timer10/11  d 30?23 t1ck0  t1ck1  t1cap0  t1cap1  t1out0  t1out1  tcout0  tcout1     

 s3c84bb/f84bb  pr oduct overview     1-7   table 1-1. s3c84bb/f84bb pin d escriptions (80-qfp) (continued)  pin  name  pin  type  pin  description  circuit  type  pin  number  share  pins  p4.0 - p4.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  p4.0-p4.7 can alternately be used as inputs for  external interrupts int0-int7, respectively (with  noise filters and interrupt controller)  d-1 38-31  int0? int7  p5.0 - p5.7  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  alternately, p5.0~p5.3 can be used as i/o for serial  por, uart0, uart1, respectively.  g 22-17,11-9 txd1  rxd1  txd0  rxd0  p6.0 - p6.7  o  n-channel, open-drain output only port.  f  58?54,51-49   p7.0 - p7.7  i  general-purpose di gital input ports. alternatively  used as analog input pins for a/d converter  modules.  e 48-45,42-39 adc0- adc7  p8.0 - p8.5  i/o  bit programmable port; input or output mode  selected by software; input or push-pull output.  software assignable pull-up.  p8.4, p8.5 can alternately be used as inputs for  external interrupts int8,  int9, respectively (with  noise filters and interrupt controller)  d,d-1 64-59  int8,int9                            

 product overview   s3c84bb/f84bb  1-8     table 1-1. s3c84bb/f84bb pin d escriptions (80-qfp) (continued)  pin  name  pin  type  pin  description  circuit  type  pin  number  share  pins  ad0 - ad7  i  analog input pins for a/d converter module.  alternatively used as general-purpose digital  input port 7.  e 48?45  42?39  p7.0?p7.7 avref, avss  -  a/d converter reference voltage and ground  -  43, 44  -  rxd0, rxd1  i/o  serial data  rxd pin for receive input and  transmit output (mode 0)  d  18, 21  p5.3, p5.1 txd0, txd1  o  serial data txd pin for transmit output and  shift clock input (mode 0)  d  20, 22  p5.2, p5.0 tack  i  external clock input pins for timer a  d  3  p2.5  tacap  i  capture input pins for timer a  d  2  p2.6  taout  o  pulse width modulation output pins for timer a d  1  p2.7  tbpwm  o  carrier frequency output pins for timer b  d  4  p2.4  tcout0  tcout1  o  timer c 8-bit pwm mode output or counter  match toggle output pins  d 24,23 p3.6,p3.7 t1ck0  t1ck1  i  external clock input pins for timer 1  d  39,30  p3.0,p3.1 t1cap0  t1cap1  i  capture input pins for timer 1  d  28,27  p3.2,p3.3 t1out0  t1out1  o  timer 1 16-bit pwm mode output or counter  match toggle output pins  d 26,25 p3.4,p3.5 si,so,sck  i/o  synchronous sio pins  d  7,8,9  p2.1,p2.0, p2.2  resetb i  system reset pin (pull-up resistor: 240 k ? )    b 19  -  test  i  pull ? down register connected internally   -  16  -  vdd1, vdd2,  vss1, vss2  -  power input pins   -  12,53,  13,52  -  xin, xout  -  main oscillator pins  -  15,14  -                 

 s3c84bb/f84bb  pr oduct overview     1-9   pin circuits  schmitt trigger in v dd pull-up resistor   figure 1-4.  pin circuit type b ( resetb )    p-channel n-channel v dd out output disable data   figure 1-5.  pin circuit type c 

 product overview   s3c84bb/f84bb  1-10       i/o output disable data  pin circuit type c pull-up enable v dd   figure 1-6.  pin circuit type d (p0, p1, p2 except p2.3, p3, p8 except p8.4, p8.5)    i/o output disable data  pin circuit type c pull-up enable v dd noise filter ext.int input normal v dd   figure 1-7.  pin circuit type d-1 (p4, p8.4, p8.5) 

 s3c84bb/f84bb  pr oduct overview     1-11     i/o output disable data  pin circuit type c pull-up enable v dd to dac   figure 1-8.  pin circuit type d-2 (p2.3)    in data adc in en to adc   figure 1-9.  pin circuit type e (adc0-adc7)  

 product overview   s3c84bb/f84bb  1-12       n-channel out data   figure 1-10.  pin circuit type f (p6)    i/o pull-up enable v dd input normal p-channel n-channel v dd output disable data open-drain   figure 1-11.  pin circuit type g (p5.7-p5.4)   

 s3c84bb/f84bb  address spaces     2-1   2  address spaces  overview  the s3c84bb/f84bb microcontroller  has two types of address space:  ?  internal program memory (rom)  ?  internal register file (ram)  a 16-bit address bus supports program  memory operations. a separate 8-bit  register bus carries addresses and  data between the cpu and the register file.   the s3c84bb/f84bb has an internal 64-kbyte mask- programmable rom/flash rom and 2064-byte ram.        

 address spaces    s3c84bb/f84bb  2-2     program memory (rom)  program memory (rom) stores program  codes or table data. the s3c84 bb has 64-kbytes of internal mask  programmable program memory. the program memory addr ess range is therefore 0h?ffffh (see figure 2-1).   the first 256 bytes of the rom (0h-0ffh) are reserved for  interrupt vector addresses. unused locations in this  address range can be used as normal program memory. if y ou use the vector address area to store a program  code, be careful not to overwrite the vect or addresses stored in these locations.   the rom address at which a program exec ution starts after a reset is 0100h.   (decimal) 65,535 255 (hex) ffffh 0ffh 0h 0 64-kbyte interrupt vector area   figure 2-1. program memory address space     

 s3c84bb/f84bb  address spaces     2-3   register architecture  in the s3c84bb/f84bb implementation, the upper 64-byte  area of register files is expanded two 64-byte areas,  called  set 1  and  set 2 . the upper 32-byte area of set 1 is further  expanded two 32-byte register banks (bank 0  and bank 1), and the lower 32-byte area is a single 32-byte  common area. in addition, set 2 is logically expanded  8 separately addressable register pages, page 0?page 7.   in case of s3c84bb/f84bb the total number of addressabl e 8-bit registers is 2,144.  of these 2,144 registers, 16  bytes are for cpu and system control  registers, 64 bytes are for peripheral  control and data registers, 16 bytes  are used as a shared working registers, and  2,048 registers are for general-purpose use.  you can always address set 1 register locations, regardless  of which of the 8 register  pages is currently selected.  set 1 locations, however, can only be addr essed using direct addressing modes.  the extension of register space into separately addr essable areas (sets, banks, and pages) is supported by  various addressing mode restrictions, the select bank  instructions, sb0 and sb1, and the register page pointer  (pp).  specific register types and the area (in  bytes) that they occupy in the regi ster file are summarized in table 2?1.  table 2-1. s3c84bb/f84bb register type summary  register type  number of bytes  general-purpose registers (including 16-byte common  working register area, the 192- byte prime register area,  and the 64-byte set 2 area)  cpu and system control registers  mapped clock, peripheral, i/o control, and data registers  2,064      16  64  total addressable bytes   2,144 

 address spaces    s3c84bb/f84bb  2-4     bank 1 ffh e0h 32 bytes e0h dfh d0h cfh c0h set 2 general-purpose  data registers (indirect register, indexed mode, and stack operations) c0h bfh 00h ffh 192 bytes 64 bytes 256 bytes system and peripheral control registers (register addressing mode) system and peripheral control registers (register addressing mode) general purpose register (register addressing mode) prime data registers (all addressing modes) set1 page 1 bank 0 page 0 page 0 page 2 page 3 page 4 page 5 page 6 page 7   figure 2-2. internal register file organization  

 s3c84bb/f84bb  address spaces     2-5   register page pointer (pp)  the s3c8-series architecture supports the logical expansion  of the physical 2,064-byte inte rnal register file (using  an 8-bit data bus) into as many as 16 separately addre ssable register pages. page addressing is controlled by  the register page pointer (pp, dfh). in the s3c84bb/f 84bb microcontroller, a paged register file expansion is  implemented for data registers,  and the register page pointer must be changed to address other pages.  after a reset, the page pointer's source value (lower ni bble) and the destination value (upper nibble) are always  "0000", automatically selecting page 0 as the sour ce and destination page for register addressing.   register page pointer (pp) dfh ,set 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 destination register page selection bits: destination: page 0 source register page selection bits: source: page 0 note: in the s3c84bb/f84bb microcontroller, pages 0~7 are implemented. a hardware reset operation writes the 4-bit destination and source values show n above to the register page pointer. these values should be modified to address other pages. 0000 0000 destination: page 7 source: page 7 0111 0111 ... ... ... ...   figure 2-3. register page pointer (pp)    programming tip ? using the page pointer for ram clear (page 0, page 1)   ld pp,#00h  ; destination      0, source      0   srp #0c0h      ld  r0,#0ffh  ;  page 0 ram clear starts  ramcl0 clr  @r0     djnz r0,ramcl0    clr  @r0  ;  r0 = 00h     ld pp,#10h  ; destination      1, source      0    ld  r0,#0ffh  ;  page 1 ram clear starts  ramcl1 clr  @r0   djnz r0,ramcl1      clr  @r0  ;  r0 = 00h  note:   you should refer to page 6-39 and use djnz instruction pr operly when djnz instruction is used in your program. 

 address spaces    s3c84bb/f84bb  2-6     register set 1  the term  set 1  refers to the upper 64 bytes of the  register file, locations c0h?ffh.   the upper 32-byte area of this 64-byte space (e 0h?ffh) is expanded two 32-byte register banks,  bank 0  and  bank 1 . the set register bank instructions, sb0 or sb1,  are used to address one bank or the other. a hardware  reset operation always selects bank 0 addressing.  the upper two 32-byte areas (bank 0 and bank 1) of  set 1 (e0h?ffh) contains 64 mapped system and  peripheral control registers. the lower 32-byte area  contains 16 system regist ers (d0h?dfh) and a 16-byte  common working register area (c0h?cfh). you can use  the common working register area as a ?scratch? area  for data operations being performed in ot her areas of the register file.  registers in set 1 locations are directly accessible at  all times using register addressing mode. the 16-byte  working register area can only be accessed using work ing register addressing (for more information about  working register addressing, please refe r to chapter 3, ?addressing modes.?)  register set 2  the same 64-byte physical space that is used for set  1 locations c0h?ffh is logically duplicated to add another  64 bytes of register space. this expanded ar ea of the register file is called set  2 . for the s3c84bb/f84bb, the  set 2 address range (c0h?ffh) is accessible on pages 0-7.  the logical division of set 1 and set 2 is maintained by  means of addressing mode restrictions. you can use only  register addressing mode to access set 1 locations. in order  to access registers in set 2, you must use register  indirect addressing mode or  indexed addressing mode.  the set 2 register area is commonly used for stack operations. 

 s3c84bb/f84bb  address spaces     2-7   prime register space  the lower 192 bytes (00h?bfh) of the s3c84bb/f84bb's eight   256-byte register pages is called  prime register  area.  prime registers can be accessed using any of t he seven addressing modes (see chapter 3, "addressing  modes.")   the prime register area on page 0 is immediately addre ssable following a reset. in order to address prime  registers on pages 0, or 1 you must set the register  page pointer (pp) to the appropr iate source and destination  values.  page 7 ffh f0h e0h d0h c0h set 1 bank 0 peripheral and i/o general-purpose cpu and system control ffh ffh c0h set 2 00h prime space bfh bank 1 ... page 0 page 0 ffh   figure 2-4. set 1, set 2, prime area register 

 address spaces    s3c84bb/f84bb  2-8     working registers  instructions can access specific 8-bit registers or 16-bit  register pairs using either  4-bit or 8-bit address fields.  when 4-bit working register addressing is used, the 256-by te register file can be seen by the programmer as one  that consists of 32 8-byte register  groups or "slices." each  slice comprises of eight 8-bit registers.   using the two 8-bit register pointers,  rp1 and rp0, two working register slic es can be selected at any one time to  form a 16-byte working register block. using the regist er pointers, you can move this 16-byte register block  anywhere in the addressable register  file, except for the set 2 area.  the terms slice and block are used in this manual to help y ou visualize the size and relative locations of selected  working register spaces:  ?  one working register  slice  is 8 bytes (eight 8-bit worki ng registers, r0?r7 or r8?r15)  ?  one working register  block  is 16 bytes (sixteen 8-bit working registers, r0?r15)  all the registers in an 8-byte working register slice hav e the same binary value for their five most significant  address bits. this makes it possible for each register pointer  to point to one of the 24 slices in the register file  other than set 2.   the base addresses for the two selected 8-byte regi ster slices are contained in register pointers  rp0 and rp1.   after a reset, rp0 and rp1 always point to t he 16-byte common area in set 1 (c0h?cfh).  each register pointer points to one 8-byte slice of the register space, selecting a total 16- byte working register block. 1  1  1  1  1  x  x  x rp1 (registers r8-r15) rp0 (registers r0-r7) slice 32 slice 31 ~ ~ cfh c0h ffh f8h f7h f0h fh 8h 7h 0h slice 2 slice 1 10h set 1 only 0  0  0  0  0  x  x  x   figure 2-5. 8-byte working register areas (slices) 

 s3c84bb/f84bb  address spaces     2-9   using the register pointers  after a reset, rp# point to the working register  common area: rp0 points to addresses c0h?c7h, and rp1  points to addresses c8h?cfh.   to change a register pointer value, you load a new value  to rp0 and/or rp1 using an srp or ld instruction.   (see figures 2-6 and 2-7).   with working register addressing, you can only access those tw o 8-bit slices of the regist er file that are currently  pointed to by rp0 and rp1. you can not,  however, use the register pointers to  select a working register space in  set 2, c0h?ffh, because these locations can be acce ssed only using the indirect register or indexed  addressing modes.  the selected 16-byte working register block usually c onsists of two contiguous 8- byte slices. as a general  programming guideline, it is recommended that rp0 point to  the "lower" slice and rp1 point to the "upper" slice  (see figure   2-6).  because a register pointer can point to either of the tw o 8-byte slices in the working register block, you can  flexibly define the working register  area to support program requirements.     programming tip ? setting the register pointers   srp #70h  ; rp0      70h, rp1      78h   srp1 #48h  ; rp0      no change, rp1      48h,   srp0 #0a0h  ; rp0      a0h, rp1      no change   clr rp0  ; rp0      00h, rp1      no change   ld rp1,#0f8h  ; rp0      no change, rp1      0f8h  fh (r15) 0h (r0) 8-byte slice 16-byte contiguous working register block register file contains 32 8-byte slices rp0 rp1 8h 7h 0  0  0  0  1  x  x  x 0  0  0  0  0  x  x  x 8-byte slice   figure 2-6. contiguous 16-byte working register block 

 address spaces    s3c84bb/f84bb  2-10     cfh (r15) 0h (r0) 8-byte slice 16-byte non-contiguou s working register block register file contains 32 8-byte slices rp0 rp1 7h (r7) 1  1  0  0  1  x  x  x 0  0  0  0  0  x  x  x 8-byte slice c8h (r8)   figure 2-7. non-contiguous 16-byte working register block    programming tip ? using the rps to calculate the sum of a series of registers  calculate the sum of registers 80h?85h  using the register pointer. the r egister addresses from 80h through 85h  contain the values 10h, 11h, 12h , 13h, 14h, and 15h, respectively:   srp0 #80h  ; rp0     80h   add r0,r1  ; r0      r0  +  r1   adc r0,r2  ; r0      r0  +  r2 + c   adc r0,r3  ; r0      r0  +  r3 + c   adc r0,r4  ; r0      r0  +  r4 + c   adc r0,r5  ; r0      r0  +  r5 + c  the sum of these six registers, 6fh, is located in the  register r0 (80h). the instruction string used in this  example takes 12 bytes of instruction c ode and its execution time is 36 cycles. if  the register pointer is not used to  calculate the sum of these registers, the fo llowing instruction sequence would have to be used:   add 80h,81h  ; 80h      (80h)  +  (81h)   adc 80h,82h  ; 80h      (80h)  +  (82h)  +  c   adc 80h,83h  ; 80h      (80h)  +  (83h)  +  c   adc 80h,84h  ; 80h      (80h)  +  (84h)  +  c   adc 80h,85h  ; 80h      (80h)  +  (85h)  +  c  now, the sum of the six registers is also located in regi ster 80h. however, this instru ction string takes 15 bytes of  instruction code rather than 12 by tes, and its execution time is  50 cycles rather than 36 cycles. 

 s3c84bb/f84bb  address spaces     2-11   register addressing  the s3c8-series register architecture provides an effici ent method of working register addressing that takes full  advantage of shorter instruction form ats to reduce execution time.   with register (r) addressing mode, in which the operand value  is the content of a specif ic register or register  pair, you can access any location in the  register file except for set 2. with  working register addressing, you use a  register pointer to specify an 8-byte wo rking register space in the register  file and an 8-bit register within that  space.   registers are addressed either as a single 8-bit register or  as a paired 16-bit register  space. in a 16-bit register  pair, the address of the first 8-bit register is always  an even number and the address of t he next register is always  an odd number. the most significant byte of the 16-bit  data is always stored in the even-numbered register, and  the least significant byte is always st ored in the next (+1) odd-numbered register.   working register addressing differs from register addressing  as it uses a register point er to identify a specific  8-byte working register space in the  internal register file and a specific  8-bit register within that space.  msb rn lsb rn+1 n = even address   figure 2-8. 16-bit register pair 

 address spaces    s3c84bb/f84bb  2-12     rp1 rp0 register pointers 00h all addressing modes page 0-7 indirect register, indexed addressing modes page 0-7 register addressing only can be pointed by register pointer ffh e0h bfh control registers system registers special-purpose registers d0h c0h bank 1 bank 0 note: in the s3c84bb/f84bb microcontroller, pages 0-7 are implemented. pages 0-7 contain all of the addressable registers in the internal register file. each register pointer (rp) can independently point to one of the 24 8-byte "slices" of the register file (other than set 2). after a reset, rp0 points to locations c0h-c7h and rp1 to locations c8h-cfh (that is, to the common working register area). ffh c0h set 2 cfh general-purpose register prime registers   figure 2-9. register file addressing   

 s3c84bb/f84bb  address spaces     2-13   common working register area (c0h?cfh)  after a reset, register pointers rp0 and rp 1 automatically select two 8-byte r egister slices in set 1, locations  c0h?cfh, as the active 16-byte working register block:   rp0      c0h?c7h   rp1      c8h?cfh  this 16-byte address range is called  common area . that is, locations in this  area can be used as working  registers by operations that address  any location on any page in the regist er file. typically, these working  registers serve as temporary buffers  for data operations between different pages.  ffh page 7 ffh f0h e0h d0h c0h set 1 ffh ffh c0h set 2 00h prime space bfh ... page 0 page 0 following a hardware reset, register pointers rp0 and rp1 point to the common working register area, locations c0h-cfh. rp0 = rp1 = 1 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0 ~ ~ ~ ~   figure 2-10. common working register area 

 address spaces    s3c84bb/f84bb  2-14       programming tip ? addressing the common working register area  as the following examples show, you should access worki ng registers in the common area, locations c0h?cfh,  using working register addressing mode only.  examples 1 :     ld  0c2h,40h  ;  invalid addressing mode!      use working register addressing instead:    srp #0c0h    ld r2,40h  ; r2 (c2h)     the value in location 40h  examples 2:      add  0c3h,#45h  ;  invalid addressing mode!      use working register addressing instead:      srp #0c0h    add r3,#45h  ; r3 (c3h)     r3 + 45h  4-bit working register addressing  each register pointer defines a movable 8-byte slice of  working register space. the address information stored in  a register pointer serves as an addressing "window" that  makes it possible for instructions to access working  registers very efficiently using short 4-bit addresses.  when an instruction addresses a location in the selected  working register area, the address bits are concatenated in  the following way to form a complete 8-bit address:  ?  the high-order bit of the 4-bit address selects one of the  register pointers ("0" sele cts rp0, "1" selects rp1).  ?  the five high-order bits in the register pointer  select an 8-byte slice of the register space.  ?  the three low-order bits of the 4-bit address se lect one of the eight registers in the slice.  as shown in figure 2-11, the result of  this operation is that the five high-order  bits from the register pointer are  concatenated with the three low-order bits from the instru ction address to form the complete address. as long as  the address stored in the register pointer remains unchanged,  the three bits from the address will always point to  an address in the same 8-byte register slice.  figure 2-12 shows a typical example of 4-bit working regi ster addressing. the high-order  bit of the instruction  "inc r6" is "0", which selects rp0. the five high-or der bits stored in rp0 (01110b) are concatenated with the  three low-order bits of the instruction's 4-bit addr ess (110b) to produce the register address 76h (01110110b). 

 s3c84bb/f84bb  address spaces     2-15   together they create an 8-bit register address register pointer provides five high-order bits address opcode selects rp0 or rp1 rp1 rp0 4-bit address provides three low-order bits   figure 2-11. 4-bit working register addressing  register address (76h) rp0 0  1  1  1  0 0  0  0 0  1  1  1  0 1  1  0 r6 0  1  1  0 1  1  1  0 selects rp0 instruction 'inc r6' opcode rp1 0  1  1  1  1 0  0  0   figure 2-12. 4-bit working  register addressing example 

 address spaces    s3c84bb/f84bb  2-16     8-bit working register addressing  you can also use 8-bit working register addressing to a ccess registers in a selected working register area. to  initiate 8-bit working register addressing, the upper four  bits of the instruction addr ess must contain the value  "1100b." this 4-bit value (1100b) indicates that the remain ing four bits have the same effect as 4-bit working  register addressing.  as shown in figure 2-13, the lower nibble of the 8-bit addr ess is concatenated in much the same way as for 4-bit  addressing. bit 3 selects either rp0 or  rp1, which then supplies the five high- order bits of the final address, the  three low-order bits of the complete address  are provided by the original instruction.  figure 2-14 shows an example of 8-bit working register addr essing. the four high-order bits of the instruction  address (1100b) specify 8-bit working register addressing. bi t 3 ("1") selects rp1 and the five high-order bits in  rp1 (10101b) become the five high-order bits of the regist er address. the three low-order bits of the register  address (011) are provided by the three low-order bits of  the 8-bit instruction address. the five address bits from  rp1 and the three address bits from the instruction are  concatenated to form the complete register address,  0abh (10101011b).  8-bit logical address 8-bit physical address register pointer provides five high-order bits address selects rp0 or rp1 rp1 rp0 three low-order bits these address bits indicate 8-bit working register addressing 1100   figure 2-13. 8-bit working register addressing 

 s3c84bb/f84bb  address spaces     2-17   8-bit address form instruction 'ld r11, r2' rp0 0  1  1  0  0 0  0  0 1  1  0  0    1    0  1  1 selects rp1 r11 register address (0abh) rp1 1  0  1  0  1 0  0  0 1  0  1  0  1 0  1  1 specifies working register addressing   figure 2-14. 8-bit working  register addressing example 

 address spaces    s3c84bb/f84bb  2-18     system and user stack  the s3c8-series microcontrollers use  the system stack for dat a storage, subroutine calls and returns. the push  and pop instructions are used to control system sta ck operations. the s3c84bb/f 84bb architecture supports  stack operations in the internal register file.  stack operations  return addresses for procedure calls, interrupts, and data  are stored on the stack. t he contents of the pc are  saved to stack by a call instruction  and restored by the ret instruction.  when an interrupt occurs, the contents  of the pc and the flags registers are pushed to the stack.  the iret instruction then pops these values back to  their original locations. the stack address value  is always decreased by one before a push operation and  increased by one  after  a pop operation. the stack pointer (sp) always  points to the stack frame stored on the top  of the stack, as shown in figure 2-15.   stack contents after a call instruction stack contents after an interrupt top of stack flags pch pcl pcl pch top of stack low address high address   figure 2-15. stack operations  user-defined stacks  you can freely define stacks in the internal register f ile as data storage locations. the instructions pushui,  pushud, popui, and popud support user-defined stack operations.   stack pointers (spl, sph)  register locations d8h and d9h contain the 16-bit stack poi nter (sp) that is used fo r system stack operations.  the most significant byte of the sp address, sp15?sp8,  is stored in the sph register (d8h), and the least  significant byte, sp7?sp0, is stored in the spl regist er (d9h). after a reset, the sp value is undetermined.  because only internal memory space  is implemented in the s3c84bb/f84bb, the spl must be initialized to an 8- bit value in the range 00h?ffh. the sph register is  not needed and can be used as a general-purpose register,  if necessary.   when the spl register contains the only stack pointer va lue (that is, when it points  to a system stack in the  register file), you can use the sph register as a gener al-purpose data register. however, if an overflow or  underflow condition occurs as a result of increasing or  decreasing the stack address value in the spl register  during normal stack operations, the value in the spl regi ster will overflow (or underfl ow) to the sph register,  overwriting any other data that is curr ently stored there. to avoid overwrit ing data in the sph register, you can  initialize the spl value to "ffh" instead of "00h". 

 s3c84bb/f84bb  address spaces     2-19     programming tip ? standard stack  operations using push and pop  the following example shows you how to perform stack operat ions in the internal register file using push and  pop instructions:   ld spl,#0ffh  ; spl      ffh         ;  (normally, the spl is set  to 0ffh by the initialization       ; routine)    ?   ?   ?     push  pp  ;  stack address 0feh      pp    push  rp0  ;  stack address 0fdh      rp0    push  rp1  ;  stack address 0fch      rp1    push  r3  ;  stack address 0fbh      r3    ?   ?   ?   pop r3  ; r3      stack address 0fbh   pop rp1  ; rp1      stack address 0fch   pop rp0  ; rp0      stack address 0fdh   pop pp  ; pp      stack address 0feh     

 address spaces    s3c84bb/f84bb  2-20     notes       

 s3c84bb/f84bb  addressing modes     3-1   addressing modes  overview  instructions that are stored in program memory are fetched for execution using the program counter. instructions  indicate the operation to be performed and the data to be operated on. addressing mode is the method used to  determine the location of the data operand. the operands specified in sam88rc instructions may be condition  codes, immediate data, or a location in the register file, program memory, or data memory.   the s3c8-series instruction set supports seven explicit addressing modes. not all of these addressing modes are  available for each instruction. the seven addressing modes and their symbols are:  ? register (r)  ?  indirect register (ir)  ? indexed (x)  ?  direct address (da)  ?  indirect address (ia)  ?  relative address (ra)  ? immediate (im) 

 addressing modes    s3c84bb/f84bb  3-2     register addressing mode (r)  in register addressing mode (r), the operand value is the content of a specified register or register pair   (see figure 3-1).   working register addressing differs from register addressing in that it uses a register pointer to specify an 8-byte  working register space in the register file and an 8-bit register within that space (see figure 3-2).  dst value used in instruction execution opcode operand 8-bit register file address point to one register in register file one-operand instruction (example) sample instruction: dec cntr ;    where cntr is the label of an 8-bit register address program memory register file   figure 3-1. register addressing  dst opcode 4-bit working register point to the working register (1 of 8) two-operand instruction (example) sample instruction: add r1, r2 ;    where r1 and r2 are registers in the currently      selected working register area. program memory register file src 3 lsbs rp0 or rp1 selected rp points to start of working register block operand msb point to rp0 ot rp1   figure 3-2. working register addressing 

 s3c84bb/f84bb  addressing modes     3-3  indirect register addressing mode (ir)  in indirect register (ir) addressing mode, the content of the specified register or register pair is the address of the  operand. depending on the instruction used, the actual address may point to a register in the register file, to  program memory (rom), or to an external memory space (see figures 3-3 through 3-6).   you can use any 8-bit register to indirectly address another register. any 16-bit register pair can be used to  indirectly address another memory location. please note, however, that you cannot access locations c0h?ffh in  set 1 using the indirect register addressing mode.  dst address of operand used by instruction opcode address 8-bit register file address point to one register in register file one-operand instruction (example) sample instruction: rl @shift ;    where shift is the label of an 8-bit register address program memory register file value used in instruction execution operand   figure 3-3. indirect register addressing to register file 

 addressing modes    s3c84bb/f84bb  3-4     indirect register addressing mode (continued)  dst opcode pair points to register pair example instruction references program memory sample instructions: call @rr2 jp @rr2 program memory register file value used in instruction operand register program memory 16-bit address points to program memory                             figure 3-4. indirect register addressing to program memory 

 s3c84bb/f84bb  addressing modes     3-5  indirect register addressing mode (continued)  dst opcode address 4-bit working register address point to the working register (1 of 8) sample instruction: or r3, @r6 program memory register file src 3 lsbs value used in instruction operand selected rp points to start fo working register block rp0 or rp1 msb points to rp0 or rp1 ~~ ~~   figure 3-5. indirect working register addressing to register file 

 addressing modes    s3c84bb/f84bb  3-6     indirect register addressing mode (concluded)  dst opcode 4-bit w orking register address sample instructions: ldc r5,@rr6 ;   program memory access lde r3,@ rr14 ;   external data m em ory access lde @ rr4, r8 ;   external data m em ory access program memory r egister file src value used in instruction operand example instruction references either program memory or data mem ory program memory or data mem ory next 2-bit point  to w orking register pair (1 of 4) lsb selects register pair 16-bit address points to program memory or data memory rp0 or rp1 msb points to rp0 or rp1 selected rp points to start of working register block   figure 3-6. indirect working register addressing to program or data memory 

 s3c84bb/f84bb  addressing modes     3-7  indexed addressing mode (x)  indexed (x) addressing mode adds an offset value to a base address during instruction execution in order to  calculate the effective operand address (see figure 3-7). you can use indexed addressing mode to access  locations in the internal register file or in external memory. please note, however, that you cannot access locations  c0h?ffh in set 1 using indexed addressing mode.  in short offset indexed addressing mode, the 8-bit displacement is treated as a signed integer in the range  ?128   to  +127. this applies to external memory accesses only (see figure 3-8.)  for register file addressing, an 8-bit base address provided by the instruction is added to an 8-bit offset contained  in a working register. for external memory accesses, the base address is stored in the working register pair  designated in the instruction. the 8-bit or 16-bit offset given in the instruction is then added to that base address  (see figure 3-9).   the only instruction that supports indexed addressing mode for the internal register file is the load instruction  (ld). the ldc and lde instructions support indexed addressing mode for internal program memory and for  external data memory, when implemented.  dst/src opcode two-operand instruction example point to one of the w orking register (1 of 8) sample instruction: ld      r0, #base[r1] ;    w here base is an 8-bit immediate value program memory register file x 3 lsbs value used in instruction operand index base address rp0 or rp1 selected rp points to start of working register block   +   figure 3-7. indexed addressing to register file 

 addressing modes    s3c84bb/f84bb  3-8     indexed addressing mode (continued)  register file operand program memory or data memory point to working register pair (1 of 4) lsb selects 16-bit address added to offset rp0 or rp1 msb points to rp0 or rp1 selected rp points to start of working register block dst/src opcode program memory x offset 4-bit working register address sample instructions: ldc r4, #04h[rr2] ;   the values in the program address (rr2 + 04h)     are loaded into register r4. lde r4,#04h[rr2] ;   identical operation to ldc example, except that     external program memory is accessed. next 2 bits register pair value used in instruction 8-bits 16-bits 16-bits + ~~   figure 3-8. indexed addressing to program or data memory with short offset 

 s3c84bb/f84bb  addressing modes     3-9  indexed addressing mode (continued)  register file operand program memory or data memory point to working register pair lsb selects 16-bit address added to offset rp0 or rp1 msb points to rp0 or rp1 selected rp points to start of working register block sample instructions: ldc r4, #1000h[rr2] ;   the values in the program address (rr2 + 1000h)     are loaded into register r4. lde r4,#1000h[rr2] ;   identical operation to ldc example, except that     external program memory is accessed. next 2 bits register pair value used in instruction 16-bits 16-bits 16-bits dst/src opcode program memory src offset 4-bit working register address offset + ~~   figure 3-9. indexed addressing to program or data memory 

 addressing modes    s3c84bb/f84bb  3-10     direct address mode (da)  in direct address (da) mode, the instruction provides the operand's 16-bit memory address. jump (jp) and call  (call) instructions use this addressing mode to specify the 16-bit destination address that is loaded into the pc  whenever a jp or call instruction is executed.   the ldc and lde instructions can use direct address mode to specify the source or destination address for load  operations to program memory (ldc) or to external data memory (lde), if implemented.  sample instructions: ldc r5,1234h ;    the values in the program address (1234h)      are loaded into register r5. lde r5,1234h ;    identical operation to ldc example, except that      external program memory is accessed. dst/src opcode program memory "0" or "1" lower address byte lsb selects program memory or data memory: "0" = program memory "1" = data memory memory address used upper address byte program  or data memory   figure 3-10. direct addressing for load instructions 

 s3c84bb/f84bb  addressing modes     3-11  direct address mode (continued)  opcode program memory lower address byte memory address used upper address byte sample instructions: jp c,job1 ;    where job1 is a 16-bit immediate address call display ;    where display is a 16-bit immediate address next opcode   figure 3-11. direct addressing for call and jump instructions 

 addressing modes    s3c84bb/f84bb  3-12     indirect address mode (ia)  in indirect address (ia) mode, the instruction specifies an address located in the lowest 256 bytes of the program  memory. the selected pair of memory locations contains the actual address of the next instruction to be executed.  only the call instruction can use the indirect address mode.  because the indirect address mode assumes that the operand is located in the lowest 256 bytes of program  memory, only an 8-bit address is supplied in the instruction; the upper bytes of the destination address are  assumed to be all zeros.   current instruction program memory locations 0-255 program memory opcode dst lower address byte upper address byte next instruction lsb must be zero sample instruction: call #40h        ;   the 16-bit value in program memory addresses 40h            and 41h is the subroutine start address.   figure 3-12. indirect addressing 

 s3c84bb/f84bb  addressing modes     3-13  relative address mode (ra)  in relative address (ra) mode, a twos-complement signed displacement between  ? 128 and  + 127 is specified  in the instruction. the displacement value is then added to the current pc value. the result is the address of the  next instruction to be executed. before this addition occurs, the pc contains the address of the instruction  immediately following the current instruction.  several program control instructions use the relative address mode to perform conditional jumps. the instructions  that support ra addressing are btjrf, btjrt, djnz, cpije, cpijne, and jr.  opcode program memory displacement program memory address used sample instructions: jr ult,$+offset      ;    where offset is a value in the range +127 to -128 next opcode + signed displacement  value current instruction current pc value   figure 3-13. relative addressing 

 addressing modes    s3c84bb/f84bb  3-14     immediate mode (im)  in immediate (im) addressing mode, the operand value used in the instruction is the value supplied in the operand  field itself. the operand may be one byte or one word in length, depending on the instruction used. immediate  addressing mode is useful for loading constant values into registers.   (the operand value is in the instruction) opcode sample instruction: ld      r0,#0aah program memory operand   figure 3-14. immediate addressing        

 s3c84bb/f84bb     control registers     4-1    control registers  overview  control register descriptions are arranged in alphabetical order according to register mnemonic. more detailed  information about control registers is presented in the context of the specific peripheral hardware descriptions in  part ii of this manual.  the locations and read/write characteristics of all mapped registers in the s3c84bb/f84bb register file are listed  in table 4-1. the hardware reset value for each mapped register is described in chapter 8, ? reset  and power- down."  table 4-1. set 1 registers  register name  mnemonic  decimal  hex  r/w  timer b control register  tbcon  208  d0h  r/w  timer b data register (high byte)  tbdatah  209  d1h  r/w  timer b data register (low byte)  tbdatal  210  d2h  r/w  basic timer control register  btcon  211  d3h  r/w  clock control register  clkcon  212  d4h  r/w  system flags register  flags  213  d5h  r/w  register pointer 0  rp0  214  d6h  r/w  register pointer 1  rp1  215  d7h  r/w  stack pointer (high byte)  sph  216  d8h  r/w  stack pointer (low byte)  spl  217  d9h  r/w  instruction pointer (high byte)  iph  218  dah  r/w  instruction pointer (low byte)  ipl  219  dbh  r/w  interrupt request register  irq  220  dch  r  interrupt mask register  imr  221  ddh  r/w  system mode register  sym  222  deh  r/w  register page pointer  pp  223  dfh  r/w   

 control registers    s3c84bb/f84bb   4-2      table 4-2. set 1, bank 0 registers  register name  mnemonic  decimal  hex  r/w  port 0 data register  p0  224  e0h  r/w  port 1 data register  p1  225  e1h  r/w  port 2 data register  p2  226  e2h  r/w  port 3 data register  p3  227  e3h  r/w  port 4 data register  p4  228  e4h  r/w  port 5 data register  p5  229  e5h  r/w  port 6 data register  p6  230  e6h  r/w  port 7 data register  p7  231  e7h  r/w  port 8 data register  p8  232  e8h  r/w  timer a/1 interrupt pending register  tintpnd  233  e9h  r/w  timer a control register  tacon    234  eah  r/w  timer a data register  tadata  235  ebh  r/w  timer a counter register  tacnt  236  ech  r  port 8 control register (high byte)  p8conh  237  edh  r/w  port 8 control register (low byte)  p8conl  238  eeh  r/w  port 8 interrupt/pending register  p8intpnd  239  efh  r/w  port 0 control register  p0con  240  f0h  r/w  port 1 control register  p1con  241  f1h  r/w  port 2 control register (high byte)  p2conh  242  f2h  r/w  port 2 control register (low byte)  p2conl  243  f3h  r/w  port 3 control register (high byte)  p3conh  244  f4h  r/w  port 3 control register (low byte)  p3conl  245  f5h  r/w  port 4 control register (high byte)  p4conh  246  f6h  r/w  port 4 control register (low byte)  p4conl  247  f7h  r/w  port 5 control register (high byte)  p5conh  248  f8h  r/w  port 5 control register (low byte)  p5conl  249  f9h  r/w  port 4 interrupt control register  p4int  250  fah  r/w  port 4 interrupt/pending register  p4intpnd  251  fbh  r/w  location fch is factory use only  basic timer counter register  btcnt  253  fdh  r  location feh is not mapped.  interrupt priority register  ipr  255  ffh  r/w 

 s3c84bb/f84bb     control registers     4-3   table 4-3. set 1, bank 1 registers  register name  mnemonic  decimal  hex  r/w  sio data register  siodata  224  e0h  r/w  sio control register  siocon  225  e1h  r/w  uart0 data register  udata0  226  e2h  r/w  uart0 control register  uartcon0 227  e3h  r/w  uart0 baud rate data register  brdata0  228  e4h  r/w  uart0,1 pending register  uartpnd  229  e5h  r/w  timer 1(0) data register (high byte)  t1datah0  230  e6h  r/w  timer 1(0) data register (low byte)  t1datal0  231  e7h  r/w  timer 1(1) data register (high byte)  t1datah1  232  e8h  r/w  timer 1(1) data register (low byte)  t1datal1  233  e9h  r/w  timer 1(0) control register  t1con0  234  eah  r/w  timer 1(1) control register  t1con1  235  ebh  r/w  timer 1(0) counter register (high byte)  t1cnth0  236  ech  r  timer 1(0) counter register (low byte)  t1cntl0  237  edh  r  timer 1(1) counter register (high byte)  t1cnth1  238  eeh  r  timer 1(1) counter register (low byte)  t1cntl1  239  efh  r  timer c(0) data register  tcdata0  240  f0h  r/w  timer c(1) data register  tcdata1  241  f1h  r/w  timer c(0) control register  tccon0  242  f2h  r/w  timer c(1) control register  tccon1  243  f3h  r/w  sio prescaler control register  siops  244  f4h  r/w  port 7 control register  p7con  245  f5h  r/w  d/a converter data register  dadata  246  f6h  r/w  a/d, d/a converter control register  adacon  247  f7h  r/w  a/d converter data register (high byte)  addatah  248  f8h  r  a/d converter data register (low byte)   addatal  249  f9h  r  uart1 data register  udata1  250  fah  r/w  uart1 control register  uartcon1 251  fbh  r/w  uart1 baud rate data register  brdata1  252  fch  r/w  flash memory control register  fmcon  253  fdh  r/w  pattern generation control register  pgcon  254  feh  r/w  pattern generation data register  pgdata  255  ffh  r/w   

 control registers    s3c84bb/f84bb   4-4     flags -  system flags register .7 carry flag (c) .6 zero flag (z) .5 bit identifier reset  value read/write bit addressing mode r = read-only w = write-only r/w = read/write '-' = not used type of addressing that must be used to address the bit (1-bit, 4-bit, or 8-bit) reset  value notation: '-' = not used 'x' = undetermined value '0' = logic zero '1' = logic one bit number(s) that is/are appended to the register name for bit addressing name of individual bit or related bits register name register id sign flag (s) 0 operation does not generate a carry or borrow condition 0 operation generates carry-out or borrow into high-order bit 7 0 operation result is a non-zero value 0 operation result is zero 0 operation generates positive number (msb = "0") 0 operation generates negative number (msb = "1") description of the effect of specific bit settings set 1 register location in the internal register file d5h register address (hexadecimal) .7 .6 .5 x r/w register addressing mode only .4 .3 .2 bit number: msb = bit 7 lsb = bit 0 .1 .0 x r/w x r/w x r/w x r/w x r/w 0 r 0 r/w   figure 4-1. register description format 

 s3c84bb/f84bb     control registers     4-5   adacon  ? a/d, d/a converter control register                      f7h         set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w  r  r/w r/w r/w  addressing mode  register addressing mode only    .7  d/a start enable bit     0 disable operation    1  start operation     .6-.4  a/d input pin selection bits     0 0 0 adc0    0 0 1 adc1    0 1 0 adc2    0 1 1 adc3    1 0 0 adc4    1 0 1 adc5    1 1 0 adc6    1 1 1 adc7    .3  end-of-conversion bit (read-only)    0  a/d conversion opration is in progress    1  a/d conversion opration is complete    .2-.1  clock source selection bits    0 0 fxx/16    0 1 fxx/8    1 0 fxx/4    1 1 fxx    .0  a/d start or enable bit     0 disable operation    1  start operation    

 control registers    s3c84bb/f84bb   4-6     brdata0   ? uart0 baud rate data register  e4h  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  1 1 1 1 1 1 1 1  read/write   r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  baud rate data for uart0  (note)  : fxx/(16  (brdata + 1))  note:  refer to uartcon0 register. 

 s3c84bb/f84bb     control registers     4-7   brdata1   ? uart1 baud rate data register  fch  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  1 1 1 1 1 1 1 1  read/write   r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  baud rate data for uart1  (note)  : fxx/(16  (brdata + 1))  note:  refer to uartcon1 register.   

 control registers    s3c84bb/f84bb   4-8     btcon  ? basic timer control register  d3h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.4  watchdog timer function disable code (for system reset)    1  0  1  0  disable watchdog timer function     others  enable watchdog timer function    .3-.2  basic timer input clock selection bits    0 0  fxx/4096  (3)     0 1 fxx/1024    1 0 fxx/128    1  1  fxx/16 (not used)    .1  basic timer counter clear bit  (1)     0 no effect    1  clear the basic timer counter value    .0  clock frequency divider clear bit for basic timer  (2)     0 no effect    1  clear both clock frequency dividers  notes:   1.  when you write a ?1? to btcon.1, the basic timer counter value is cleared to "00h". immediately following the write     operation, the btcon.1 value is automatically cleared to ?0?.  2.  when you write a "1" to btcon.0, the corresponding frequency divider is cleared to "00h". immediately following the     write operation, the btcon.0 value is automatically cleared to "0".  3. the fxx   is selected clock for system (main osc. or sub osc.). 

 s3c84bb/f84bb     control registers     4-9   clkcon   ?   system clock control register  d4h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  ? ? ? r/w r/w ? ? ?  addressing mode  register addressing mode only    .7-.5  not used for the s3c84bb/f84bb (must keep always 0)     .4-.3  cpu clock (system clock) selection bits  (note)     0 0 fxx/16     0 1 fxx/8     1 0 fxx/2     1 1 fxx/1 (non-divided)    .2-.0  not used for the s3c84bb/f84bb (must keep always 0)   note:   after a reset, the slowest clock (divided by 16) is selected as the system clock. to select faster clock speeds, load       the appropriate values to clkcon.3 and clkcon.4.   

 control registers    s3c84bb/f84bb   4-10     flags   ? system flags register  d5h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  x x x x x x 0 0  read/write  r/w r/w r/w r/w r/w r/w  r  r/w  addressing mode  register addressing mode only    .7  carry flag (c)    0  operation does not generate a carry or underflow condition    1  operation generates a carry-out or underflow into high-order bit 7    .6  zero flag (z)    0  operation result is a non-zero value    1  operation result is zero    .5  sign flag (s)    0  operation generates a positive number (msb = "0")    1  operation generates a negative number (msb = "1")    .4  overflow flag (v)   0  operation result is      +127  or      ?128    1  operation result is  > +127  or  <  ?128     .3  decimal adjust flag (d)    0  add operation completed    1  subtraction operation completed    .2  half-carry flag (h)    0  no carry-out of bit 3 or no underflow into bit 3 by addition or subtraction    1  addition generated carry-out of bit 3 or subtraction generated underflow into bit 3   .1  fast interrupt status flag (fis)    0  interrupt return (iret) in progress (when read)    1  fast interrupt service routine in progress (when read)    .0  bank address selection flag (ba)    0  bank 0 is selected     1  bank 1 is selected     

 s3c84bb/f84bb     control registers     4-11   fmcon   ? flash memory control register  fdh  set 1, bank1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w ? ? ? ? ? r/w r/w  addressing mode  register addressing mode only    .7  user programming serial data bit (fsdat)    0  fsda=low (logic 0)    1  fsda=high (logic 1)    .6-.2  not used for the s3c84bb/f84bb (must keep always 0)      .1  user programming mode status bit (full-flash flag)    0  not-user programming mode     1  user programming mode     .0  user programming serial clock bit (fsclk)    0  fsclk=low (logic 0)   1 fsclk=high(logic 1)   

 control registers    s3c84bb/f84bb   4-12     imr   ? interrupt mask register  ddh  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset   value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  interrupt level 7 (irq7) enable bit     0  disable (mask)     1  enable (un-mask)     .6  interrupt level 6 (irq6) enable bit    0  disable (mask)     1  enable (un-mask)     .5  interrupt level 5 (irq5) enable bit    0  disable (mask)     1  enable (un-mask)     .4  interrupt level 4 (irq4) enable bit    0  disable (mask)     1  enable (un-mask)     .3  interrupt level 3 (irq3) enable bit    0  disable (mask)     1  enable (un-mask)      .2  interrupt level 2 (irq2) enable bit    0  disable (mask)     1  enable (un-mask)     .1  interrupt level 1 (irq1) enable bit     0  disable (mask)     1  enable (un-mask)        .0  interrupt level 0 (irq0) enable bit    0  disable (mask)     1  enable (un-mask)   note:   when an interrupt level is masked, any interrupt requests that may be issued are not recognized by the cpu. 

 s3c84bb/f84bb     control registers     4-13   iph   ? instruction pointer (high byte)          dah               set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  instruction pointer address (high byte)    the high-byte instruction pointer value is the upper eight bits of the 16-bit instruction  pointer address (ip15?ip8). the lower byte of the ip address is located in the ipl  register (dbh).    ipl   ? instruction pointer (low byte)          dbh  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  instruction pointer address (low byte)    the low-byte instruction pointer value is the lower eight bits of the 16-bit instruction  pointer address (ip7?ip0). the upper byte of the ip address is located in the iph  register (dah).   

 control registers    s3c84bb/f84bb   4-14     ipr   ? interrupt priority register  ffh  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7, .4, and .1  priority control bits for interrupt groups a, b, and c    0 0 0 group priority undefined    0  0  1  b  >  c  >  a    0  1  0  a  >  b  >  c    0  1  1  b  >  a  >  c    1  0  0  c  >  a  >  b    1  0  1  c  >  b  >  a    1  1  0  a  >  c  >  b     1 1 1 group priority undefined         .6  interrupt subgroup c priority control bit    0  irq6  >  irq7    1  irq7  >  irq6       .5  interrupt group c priority control bit    0  irq5  >  (irq6, irq7)    1  (irq6, irq7)  >  irq5       .3  interrupt subgroup b priority control bit     0  irq3  > irq4    1  irq4  > irq3       .2  interrupt group b priority control bit     0  irq2  >  (irq3, irq4)          1  (irq3, irq4)  >  irq2       .0  interrupt group a priority control bit    0  irq0  >  irq1    1  irq1  >  irq0 

 s3c84bb/f84bb     control registers     4-15   irq   ? interrupt request register  dch  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r r r r r r r r  addressing mode  register addressing mode only    .7  level 7 (irq7) request pending bit    0 not pending    1 pending    .6  level 6 (irq6) request pending bit    0 not pending    1 pending    .5  level 5 (irq5) request pending bit    0 not pending    1 pending    .4  level 4 (irq4) request pending bit    0 not pending    1 pending    .3  level 3 (irq3) request pending bit    0 not pending    1 pending    .2  level 2 (irq2) request pending bit    0 not pending    1 pending    .1  level 1 (irq1) request pending bit    0 not pending    1 pending       .0  level 0 (irq0) request pending bit    0 not pending    1 pending   

 control registers    s3c84bb/f84bb   4-16     p0con  ? port 0 control register  f0h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p0.7/p0.6/p0.5/p0.4     0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative function mode (pgout)     .5?.4 p0.3/p0.2     0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative function mode (pgout)     .3?.2 p0.1     0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative function mode (pgout)     .1?.0 p0.0     0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative function mode (pgout)       

 s3c84bb/f84bb     control registers     4-17   p1con   ? port 1 control register  f1h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6 p1.7/p1.6     0 0 input mode    0  1  input mode, pull-up    1 x push-pull output     .5?.4 p1.5/p1.4     0 0 input mode    0  1  input mode, pull-up    1 x push-pull output     .3?.2 p1.3/p1.2     0 0 input mode    0  1  input mode, pull-up    1 x push-pull output     .1?.0 p1.1/p1.0     0 0 input mode    0  1  input mode, pull-up    1 x push-pull output     

 control registers    s3c84bb/f84bb   4-18     p2conh   ? port 2 control register (high byte)  f2h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6 p2.7/taout    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(taout)    .5-.4 p2.6/tacap    0 0 input mode(tacap)    0  1  input mode, pull-up(tacap)    1 0 push-pull output    1  1  alternative output mode(not used)    .3?.2 p2.5/tack    0 0 input mode(tack)    0  1  input mode, pull-up(tack)    1 0 push-pull output    1  1  alternative output mode(not used)    .1?.0 p2.4/ tbpwm    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(tbpwm)   

 s3c84bb/f84bb     control registers     4-19   p2conl   ? port 2 control register (low byte)  f3h  set 1, bank 0  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p2.3/daout    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode (daout)    .5-.4 p2.2/sck    0  0  input mode (sck input)    0  1  input mode, pull-up (sck input)    1 0 push-pull output    1  1  alternative output mode (sck output)    .3-.2 p2.1/si     0 0 input mode(si)    0  1  input mode, pull-up(si)    1 0 push-pull output    1  1  alternative output mode(not used)    .1-.0 p2.0/so    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode (so)   

 control registers    s3c84bb/f84bb   4-20     p3conh   ? port 3 control register (high byte)  f4h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6 p3.7/tcout1    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(tcout1)    .5-.4 p3.6/tcout0    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(tcout0)    .3?.2 p3.5/ t1out1    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(t1out1)    .1?.0 p3.4/ t1out0    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1  1  alternative output mode(t1out0)   

 s3c84bb/f84bb     control registers     4-21   p3conl   ? port 3 control register (low byte)  f5h  set 1, bank 0  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p3.3/t1cap1    0  0  input mode (t1cap1)    0  1  input mode, pull-up (t1cap1)    1 x push-pull output    .5-.4 p3.2/ t1cap0    0  0  input mode (t1cap0)    0  1  input mode, pull-up (t1cap0)    1 x push-pull output    .3-.3 p3.1/t1ck1     0  0  input mode (t1ck1)    0  1  input mode, pull-up (t1ck1)    1 x push-pull output    .1-.0 p3.0/t1ck0    0  0  input mode (t1ck0)    0  1  input mode, pull-up (t1ck0)    1 x push-pull output   

 control registers    s3c84bb/f84bb   4-22     p4conh   ? port 4 control register (high byte)  f6h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6 p4.7/int7    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .5-.4 p4.6/ int6    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .3?.2 p4.5/ int5    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .1?.0 p4.4/ int4    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output   

 s3c84bb/f84bb     control registers     4-23   p4conl   ? port 4 control register (low byte)  f7h  set 1, bank 0  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p4.3/int3    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .5-.4 p4.2/int2    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .3-.2 p4.1/int1     0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .1-.0 p4.0/int0    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output   

 control registers    s3c84bb/f84bb   4-24     p4int   ? port 4 interrupt control register  fah  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  p4.7 external interrupt (int7) enable bit   0 disable interrupt   1 enable interrupt    .6  p4.6 external interrupt (int6) enable bit   0 disable interrupt   1 enable interrupt    .5  p4.5 external interrupt (int5) enable bit   0 disable interrupt   1 enable interrupt    .4  p4.4 external interrupt (int4) enable bit   0 disable interrupt   1 enable interrupt    .3  p4.3 external interrupt (int3) enable bit   0 disable interrupt   1 enable interrupt    .2  p4.2 external interrupt (int2) enable bit   0 disable interrupt   1 enable interrupt    .1  p4.1 external interrupt (int1) enable bit   0 disable interrupt   1 enable interrupt    .0  p4.0 external interrupt (int0) enable bit   0 disable interrupt   1 enable interrupt   

 s3c84bb/f84bb     control registers     4-25   p4intpnd   ? port 4 interrupt pending register  fbh  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  p4.7/int7 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .6  p4.6/int6 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .5  p4.5/int5 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .4  p4.4/int4 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .3  p4.3/int3 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .2  p4.2/int2 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .1  p4.1/int1 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .0  p4.0/int0 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending   

 control registers    s3c84bb/f84bb   4-26     p5conh   ? port 5 control register (high byte)  f8h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6 p5.7    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1 1 open-drain mode    .5-.4 p5.6    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1 1 open-drain mode    .3?.2 p5.5    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1 1 open-drain mode    .1?.0 p5.4    0 0 input mode    0  1  input mode, pull-up    1 0 push-pull output    1 1 open-drain mode   

 s3c84bb/f84bb     control registers     4-27   p5conl   ? port 5 control register (low byte)  f9h  set 1, bank 0  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p5.3/rxd0    0  0  input mode (rxd0 input)    0  1  input mode, pull-up mode (rxd0 input)    1 0 push-pull output    1  1  alternative output mode (rxd0 output)    .5-.4 p5.2/txd0    0 0 input mode    0  1  input mode, pull-up mode    1 0 push-pull output    1  1  alternative output mode (txd0 output)    .3-.2 p5.1/rxd1     0  0  input mode (rxd1 input)    0  1  input mode, pull-up mode (rxd1 input)    1 0 push-pull output    1  1  alternative output mode (rxd1 output)    .1-.0 p5.0/txd1    0 0 input mode    0  1  input mode, pull-up mode    1 0 push-pull output    1  1  alternative output mode (txd1 output)   

 control registers    s3c84bb/f84bb   4-28     p7con  ? port 7 control register  f5h  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7 p7.7/adc7   0 input mode    1  adc input mode    .6 p7.6/ adc6   0 input mode    1  adc input mode    .5 p7.5/ adc5   0 input mode    1  adc input mode    .4 p7.4/ adc4   0 input mode    1  adc input mode    .3 p7.3/ adc3   0 input mode    1  adc input mode    .2 p7.2/ adc2   0 input mode    1  adc input mode    .1 p7.1/ adc1   0 input mode    1  adc input mode    .0 p7.0/ adc0   0 input mode    1  adc input mode   

 s3c84bb/f84bb     control registers     4-29   p8conh   ? port 8 control register (high byte)  edh  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  1 1 1 1 0 0 0 0  read/write  -?  ?  ?  ?-  r/w r/w r/w r/w  addressing mode  register addressing mode only    .7 ? ? ? ? .4  not used for the s3c84bb/f84bb (must keep always 1)     .3?.2 p8.5/ int9    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output    .1?.0 p8.4/ int8    0  0  input mode; falling edge interrupt    0  1  input mode; rising edge interrupt    1  0  input mode, pull-up; falling edge interrupt    1 1 push-pull output   

 control registers    s3c84bb/f84bb   4-30     p8conl   ? port 8 control register (low byte)  eeh  set 1, bank 0  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6 p8.3    0 0 input mode    0  1  input mode, pull-up    1 x push-pull output    .5-.4 p8.2    0 0 input mode    0  1  input mode, pull-up    1 x push-pull output    .3-.2 p8.1     0 0 input mode    0  1  input mode, pull-up    1 x push-pull output    .1-.0 p8.0    0 0 input mode    0  1  input mode, pull-up    1 x push-pull output   

 s3c84bb/f84bb     control registers     4-31   p8intpnd   ? port 8 interrupt pending register  efh  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  1 1 0 0 1 1 0 0  read/write  ?  ? - r/w r/w ?  ? r/w r/w  addressing mode  register addressing mode only    .7-.6  not used for the s3c84bb/f84bb (must keep always 1)     .5  p8.5/int9 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .4  p8.4/int8 interrupt pending bit    0  interrupt request is not pending, pending bit clear when write 0    1  interrupt request is pending    .3-.2  not used for the s3c84bb/f84bb (must keep always 1)     .1  p8.5/int9 interrupt enable   0 disable interrupt   1 enable interrupt    .0  p8.4/int8 interrupt enable   0 disable interrupt   1 enable interrupt   

 control registers    s3c84bb/f84bb   4-32     pgcon   ?   pattern generation control register  feh  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  ? ? ? ? 0 0 0 0  read/write  ? ? ? ? r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.4  not used for the s3c84bb/f84bb     .3  software trigger start bit     0 no effect    1  software trigger start (will be automatically cleared)    .2  pg operation disable/enable selection bit    0  pg operation disable    1  pg operation enable    .1-.0  pg operation trigger mode selection bits     0  0  timer a match siganal triggering    0  1  timer b underflow siganal triggering    1  0  timer 1(0) match siganal triggering    1  1  software triggering mode     

 s3c84bb/f84bb     control registers     4-33   pp   ? register page pointer  dfh  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.4  destination register page selection bits    0 0 0 0 destination: page 0    0 0 0 1 destination: page 1    0 0 1 0 destination: page 2    0 0 1 1 destination: page 3    0 1 0 0 destination: page 4    0 1 0 1 destination: page 5    0 1 1 0 destination: page 6    0 1 1 1 destination: page 7    .3-.0  source register page selection bits    0 0 0 0 source: page 0    0 0 0 1 source: page 1    0 0 1 0 source: page 2    0 0 1 1 source: page 3    0 1 0 0 source: page 4    0 1 0 1 source: page 5    0 1 1 0 source: page 6    0 1 1 1 source: page 7  note:   in the s3c84bb/f84bb microcontroller, the internal register file is configured as eight pages (pages 0-7).     the pages 0-1 are used for general-purpose register file, and page 2-7 is used for data register or general      purpose registers. 

 control registers    s3c84bb/f84bb   4-34     rp0   ? register pointer 0  d6h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  1 1 0 0 0 ? ? ?  read/write  r/w r/w r/w r/w r/w  ?  ?  ?  addressing mode  register addressing only    .7-.3  register pointer 0 address value    register pointer 0 can independently point to one of the 256-byte working register  areas in the register file. using the register pointers rp0 and rp1, you can select two  8-byte register slices at one time as active working register space. after a reset, rp0  points to address c0h in register set 1, selecting the 8-byte working register slice  c0h?c7h.    .2-.0  not used for the s3c84bb/f84bb    rp1   ? register pointer 1  d7h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  1 1 0 0 1 ? ? ?  read/write  r/w r/w r/w r/w r/w  ?  ?  ?  addressing mode  register addressing only    .7-.3  register pointer 1 address value     register pointer 1 can independently point to one of the 256-byte working register  areas in the register file. using the register pointers rp0 and rp1, you can select two  8-byte register slices at one time as active working register space. after a reset, rp1  points to address c8h in register set 1, selecting the 8-byte working register slice  c8h?cfh.    .2-.0  not used for the s3c84bb/f84bb   

 s3c84bb/f84bb     control registers     4-35   siocon   ? sio control register  e1h  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7   sio shift clock selection bit    0  internal clock (p.s clock)    1  external clock (sck)    .6  data direction control bit    0  msb first mode    1  lsb first mode    .5  sio mode selection bit    0  receive only mode    1 transmit/receive mode    .4  shift start edge selection bit    0  tx at falling edges, rx at rising edges    1  tx at rising edges, rx at falling edges     .3  sio counter clear and shift start bit    0 no action    1  clear 3-bit counter and start shifting (auto-clear bit)    .2  sio shift operation enable bit    0  disable shifter and clock counter     1  enable shifter and clock counter    .1  sio interrupt enable bit    0  disable sio interrupt    1  enable sio interrupt    .0  sio interrupt pending bit    0  no interrupt pending    0  clear pending condition (when write)    1  interrupt is pending   

 control registers    s3c84bb/f84bb   4-36     siops   ? sio prescaler register  f4h  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  baud rate = input clock (fxx)/[(siops + 1) 2] or sck input clock   

 s3c84bb/f84bb     control registers     4-37   sph   ? stack pointer (high byte)      d8h  set 1  bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  stack pointer address (high byte)    the high-byte stack pointer value is the upper eight bits of the 16-bit stack pointer  address (sp15?sp8). the lower byte of the stack pointer value is located in register  spl (d9h). the sp value is undefined following a reset.    spl   ? stack pointer (low byte)  d9h  set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  x x x x x x x x  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.0  stack pointer address (low byte)    the low-byte stack pointer value is the lower eight bits of the 16-bit stack pointer  address (sp7?sp0). the upper byte of the stack pointer value is located in register  sph (d8h). the sp value is undefined following a reset.   

 control registers    s3c84bb/f84bb   4-38     sym   ? system mode register                                       deh              set 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  0 ? ? x x x 0 0  read/write  r/w  ?  ?  r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  not used, but you must keep ?0?    .6 and .5  not used for s3c84bb/f84bb    .4?.2  fast interrupt level selection bits     0 0 0 irq0    0 0 1 irq1    0 1 0 irg2    0 1 1 irq3    1 0 0 irq4    1 0 1 irq5    1 1 0 irq6    1 1 1 irq7    .1  fast interrupt enable bit    0  disable fast interrupt processing    1  enable fast interrupt processing    .0  global interrupt enable bit  (note)     0  disable global interrupt processing    1  enable global interrupt processing   note :  following a reset, you enable global interrupt processing by executing an ei instruction       (not by writing a "1" to sym.0). 

 s3c84bb/f84bb     control registers     4-39   t1con0   ? timer 1(0) control register  eah    set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.5  timer 1 input clock selection bits    0 0 0 fxx/1024     0 0 1 fxx (non-divide)    0 1 0 fxx/256    0  1  1  external clock falling edge    1 0 0 fxx/64    1  0  1  external clock rising edge    1 1 0 fxx/8    1 1 1 counter stop    .4-.3  timer 1 operating mode selection bits    0 0 interval mode    0  1  capture mode (capture on rising edge, ovf can occur)    1  0  capture mode (capture on falling edge, ovf can occur)    1 1 pwm mode    .2  timer 1 counter enable bit    0 no effect    1  clear the timer 1 counter (auto-clear bit)    .1  timer 1 match/capture interrupt enable bit    0 disable interrupt    1 enable interrupt    .0  timer 1 overflow interrupt enable    0  disable overflow interrupt    1  enable overflow interrupt   

 control registers    s3c84bb/f84bb   4-40     t1con1   ? timer 1(1) control register  ebh    set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.5  timer 1 input clock selection bits    0 0 0 fxx/1024     0 0 1 fxx (non-divide)    0 1 0 fxx/256    0  1  1  external clock falling edge    1 0 0 fxx/64    1  0  1  external clock rising edge    1 1 0 fxx/8    1 1 1 counter stop    .4-.3  timer 1 operating mode selection bits    0 0 interval mode    0  1  capture mode (capture on rising edge, ovf can occur)    1  0  capture mode (capture on falling edge, ovf can occur)    1 1 pwm mode    .2  timer 1 counter enable bit    0 no effect    1  clear the timer 1 counter (auto-clear bit)    .1  timer 1 match/capture interrupt enable bit    0 disable interrupt    1 enable interrupt    .0  timer 1 overflow interrupt enable    0  disable overflow interrupt    1  enable overflow interrupt   

 s3c84bb/f84bb  control register     4-41   tacon   ? timer a control register  eah  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 ?  read/write  r/w r/w r/w r/w r/w r/w r/w  ?  addressing mode  register addressing mode only    .7-.6  timer a input clock selection bits    0 0 fxx/1024    0 1 fxx/256    1 0 fxx/64    1  1  external clock (tack)    .5-.4  timer a operating mode selection bits    0  0  interval mode (taout mode)    0  1  capture mode (capture on rising edge, counter running, ovf can occur)    1  0  capture mode (capture on falling edge, counter running, ovf can occur)    1  1  pwm mode (ovf interrupt can occur)    .3  timer a counter clear bit    0 no effect    1  clear the timer a counter (after clearing, return to zero)    .2  timer a overflow interrupt enable bit    0  disable overflow interrupt    1  enable overflow interrupt    .1  timer a match/capture interrupt enable bit    0 disable interrupt    1 enable interrupt    .0  not used for the s3c84bb/f84bb    

 control registers    s3c84bb/f84bb   4-42     tbcon   ? timer b control register  d0h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6  timer b input clock selection bits    0 0 fxx    0 1 fxx/2    1 0 fxx/4    1 1 fxx/8    .5?.4  timer b interrupt time selection bits    0  0  elapsed time for low data value     0  1  elapsed time for high data value     1  0  elapsed time for low and high data values    1 1 invalid setting    .3  timer b interrupt enable bit    0 disable interrupt    1 enable interrupt    .2  timer b start/stop bit    0  stop timer b    1  start timer b    .1  timer b mode selection bit    0 one-shot mode    1 repeating mode    .0  timer b output flip-flop control bit    0  t-ff is low    1  t-ff is high  note:   fxx is selected clock for system. 

 s3c84bb/f84bb  control register     4-43   tccon0   ? timer c(0) control register  f2h    set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  not used for the s3c84bb/f84bb (must keep always 0)     .6-.4  timer c 3-bits prescaler bits    0 0 0 non devided    0 0 1 divided by 2    0 1 0 divided by 3    0 1 1 divided by 4    1 0 0 divided by 5    1 0 1 divided by 6    1 1 0 divided by 7    1 1 1 divided by 8    .3  timer c counter clear bit    0 no effect    1  clear the timer c(0) counter (auto-clear bit)    .2  timer c mode selection bit    0  fxx/1 & pwm mode    1  fxx/64 & interval mode    .1  timer c interrupt enable bit    0 disable interrupt    1 enable interrupt    .0  timer c pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending   

 control registers    s3c84bb/f84bb   4-44     tccon1   ? timer c(1) control register  f3h    set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  0 0 0 0 0 0 0 0  read/write  r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7  not used for the s3c84bb/f84bb (must keep always 0)     .6-.4  timer c 3-bits prescaler bits    0 0 0 non devided    0 0 1 divided by 2    0 1 0 divided by 3    0 1 1 divided by 4    1 0 0 divided by 5    1 0 1 divided by 6    1 1 0 divided by 7    1 1 1 divided by 8    .3  timer c counter clear bit    0 no effect    1  clear the timer c(1) counter (auto-clear bit)    .2  timer c mode selection bit    0  fxx/1 & pwm mode    1  fxx/64 & interval mode    .1  timer c interrupt enable bit    0 disable interrupt    1 enable interrupt    .0  timer c pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending       

 s3c84bb/f84bb  control register     4-45   tintpnd   ? timer a,1 interrupt pending register  e9h  set 1, bank 0   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset value  ? ? 0 0 0 0 0 0  read/write  ?  ?  r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7-.6  not used for the s3c84bb/f84bb     .5  timer 1(1) overflow interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    .4  timer 1(1) match/capture interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    .3  timer 1(0) overflow interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    .2  timer 1(0) match/capture interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    .1  timer a overflow interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    .0  timer a match/capture interrupt pending bit    0  no interrupt pending      0  clear pending bit when write     1 interrupt pending    

 control registers    s3c84bb/f84bb   4-46     uartcon0   ? uart0 control register  e3h  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  0 0 0 0 0 0 0 0  read/write   r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6  operating mode and baud rate selection bits    0 0  mode 0: sio mode [fxx/(16    (brdata0 + 1))]    0 1  mode 1: 8-bit uart [fxx/(16    (brdata0 + 1))]    1 0  mode 2: 9-bit uart [fxx/16]    1 1  mode 3: 9-bit uart [fxx/(16    (brdata0 + 1))]    .5   multiprocessor communication (1)  enable bit (for modes 2 and 3 only)    0 disable    1 enable    .4  serial data receive enable bit    0 disable    1 enable    .3  location of the 9 th  data bit to be transmitted in uart mode 2 or 3 ("0" or "1")    .2  location of the 9 th  data bit that was received in uart mode 2 or 3 ("0" or "1")    .1  receive interrupt enable bit    0  disable receive interrupt    1  enable receive interrupt    .0  transmit interrupt enable bit    0  disable transmit interrupt    1  enable transmit interrupt   notes:   1.  in mode 2 or 3, if the mce (uartcon.5) bit is set to "1", then the receive interrupt will not be activated if the received    9 th  data bit is "0". in mode 1, if mce = "1?, then the receive interrupt will not be activated if a valid stop bit was not     received. in mode 0, the mce(uartcon.5) bit should be "0".  2.  the descriptions for 8-bit and 9-bit uart mode do not include start and stop bits for serial data receive and transmit. 

 s3c84bb/f84bb  control register     4-47   uartcon1   ? uart1 control register  fbh  set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  0 0 0 0 0 0 0 0  read/write   r/w r/w r/w r/w r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.6  operating mode and baud rate selection bits    0 0  mode 0: sio mode [fxx/(16    (brdata1 + 1))]    0 1  mode 1: 8-bit uart [fxx/(16    (brdata1 + 1))]    1 0  mode 2: 9-bit uart [fxx/16]    1 1  mode 3: 9-bit uart [fxx/(16    (brdata1 + 1))]    .5   multiprocessor communication (1)  enable bit (for modes 2 and 3 only)    0 disable    1 enable    .4  serial data receive enable bit    0 disable    1 enable    .3  location of the 9 th  data bit to be transmitted in uart mode 2 or 3 ("0" or "1")    .2  location of the 9 th  data bit that was received in uart mode 2 or 3 ("0" or "1")    .1  receive interrupt enable bit    0  disable receive interrupt    1  enable receive interrupt    .0  transmit interrupt enable bit    0  disable transmit interrupt    1  enable transmit interrupt   notes:   1.  in mode 2 or 3, if the mce (uartcon.5) bit is set to "1", then the receive interrupt will not be activated if the received    9 th  data bit is "0". in mode 1, if mce = "1?, then the receive interrupt will not be activated if a valid stop bit was not     received. in mode 0, the mce(uartcon.5) bit should be "0".  2.  the descriptions for 8-bit and 9-bit uart mode do not include start and stop bits for serial data receive and transmit. 

 control registers    s3c84bb/f84bb   4-48     uartpnd   ? uart0,1 pending register      e5h           set 1, bank 1   bit identifier  .7 .6 .5 .4 .3 .2 .1 .0  reset  value  ? ? ? ? 0 0 0 0  read/write   ? ? ? ? r/w r/w r/w r/w  addressing mode  register addressing mode only    .7?.4  not used for s3c84bb/f84bb    .3  uart1 receive interrupt pending flag    0 not pending    0  clear pending bit (when write)    1 interrupt pending    .2  uart1 transmit interrupt pending flag    0 not pending    0  clear pending bit (when write)    1 interrupt pending      .1  uart0 receive interrupt pending flag    0 not pending    0  clear pending bit (when write)    1 interrupt pending    .0  uart0 transmit interrupt pending flag    0 not pending    0  clear pending bit (when write)    1 interrupt pending  notes:   1.  in order to clear a data transmit or receive interrupt pending flag, you must write a "0" to the appropriate              pending bit.  2.  to avoid programming errors, we recommend using load instruction (except for ldb), when manipulating              uartpnd values.   

 s3c84bb/f84bb  interrupt structure     5-1    interrupt structure  overview  the s3c8-series interrupt structure has three basic components: levels, vectors, and sources. the sam8 cpu  recognizes up to eight interrupt levels and supports up to 128 interrupt vectors. when a specific interrupt level has  more than one vector address, the vector priorities are established in hardware. a vector address can be assigned  to one or more sources.  levels  interrupt levels are the main unit for interrupt priority assignment and recognition. all peripherals and i/o blocks  can issue interrupt requests. in other words, peripheral and i/o operations are interrupt-driven. there are eight  possible interrupt levels: irq0?irq7, also called level 0?level 7. each interrupt level directly corresponds to an  interrupt request number (irqn). the total number of interrupt levels used in the interrupt structure varies from  device to device. the s3c84bb/f84bb interrupt structure recognizes eight interrupt levels.  the interrupt level numbers 0 through 7 do not necessarily indicate the relative priority of the levels. they are just  identifiers for the interrupt levels that are recognized by the cpu. the relative priority of different interrupt levels is  determined by settings in the interrupt priority register, ipr. interrupt group and subgroup logic controlled by ipr  settings lets you define more complex priority relationships between different levels.  vectors  each interrupt level can have one or more interrupt vectors, or it may have no vector address assigned at all. the  maximum number of vectors that can be supported for a given level is 128 (the actual number of vectors used for  s3c8-series devices is always much smaller). if an interrupt level has more than one vector address, the vector  priorities are set in hardware. s3c84bb/f84bb uses twenty four vectors.  sources  a source is any peripheral that generates an interrupt. a source can be an external pin or a counter overflow. each  vector can have several interrupt sources. in the s3c84bb/f84bb interrupt structure, there are twenty four  possible interrupt sources.  when a service routine starts, the respective pending bit should be either cleared automatically by hardware or  cleared "manually" by program software. the characteristics of the source's pending mechanism determine which  method would be used to clear its respective pending bit.  

 interrupt structure    s3c84bb/f84bb  5-2     interrupt types  the three components of the s3c8 interrupt structure described before ? levels, vectors, and sources ? are  combined to determine the interrupt structure of an individual device and to make full use of its available interrupt  logic. there are three possible combinations of interrupt structure components, called interrupt types 1, 2, and 3.  the types differ in the number of vectors and interrupt sources assigned to each level (see figure 5-1):    type 1:  one level (irqn) + one vector (v 1 ) + one source (s 1 )    type 2:  one level (irqn) + one vector (v 1 ) + multiple sources (s 1  ? s n )    type 3:  one level (irqn) + multiple vectors (v 1  ? v n ) + multiple sources (s 1  ? s n   , s n+1   ? s n+m )  in the s3c84bb/f84bb microcontroller, two interrupt types are implemented.  vectors sources levels s1 v1 s2 type 2: irqn s3 sn v1 s1 v2 s2 type 3: irqn v3 s3 v1 s1 type 1: irqn vn sn + 1 sn sn + 2 sn + m notes: 1.   the number of sn and vn value is expandable. 2.   in the s3c84bb/f84bb implementation,       interrupt types 1 and 3 are used.   figure 5-1. s3c8-series interrupt types 

 s3c84bb/f84bb  interrupt structure     5-3   s3c84bb/f84bb interrupt structure  the s3c84bb/f84bb microcontroller supports twenty four interrupt sources. all twenty four of the interrupt  sources have a corresponding interrupt vector address. eight interrupt levels are recognized by the cpu in this  device-specific interrupt structure, as shown in figure 5-2.   when multiple interrupt levels are active, the interrupt priority register (ipr) determines the order in which  contending interrupts are to be serviced. if multiple interrupts occur within the same interrupt level, the interrupt  with the lowest vector address is usually processed first (the relative priorities of multiple interrupts within a single  level are fixed in hardware).  when the cpu grants an interrupt request, interrupt processing starts. all other interrupts are disabled and the  program counter value and status flags are pushed to stack. the starting address of the service routine is fetched  from the appropriate vector address (plus the next 8-bit value to concatenate the full 16-bit address) and the  service routine is executed. 

 interrupt structure    s3c84bb/f84bb  5-4     vectors sources levels reset(clear) notes: 1.   w ithin a given interrupt level, the lower vector address has high priority. for example, b8h has       higher priority than bah within the level irq0 the priorities within each level are set at the factory. 2.   external interrupts are triggered by a rising or falling edge, depending on the corresponding control       register setting. irq2 timer c(0) match/overflow timer c(1) match/overflow timer b underflow c8h irq1 h/w timer a match/capture irq0 timer a overflow h/w , s/w h/w , s/w h/w , s/w h/w , s/w bch beh b8h bah c0h c2h c4h c6h irq3 timer 1(0) match/capture timer 1(0) overflow timer 1(1) match/capture timer 1(1) overflow e0h e2h e4h e6h irq6 p4.0 external interrupt p4.1 external interrupt p4.2 external interrupt p4.3 external interrupt s/w s/w s/w s/w sio receive/transmit cah irq4 irq5 p8.4 external interrupt p8.5 external interrupt h/w , s/w h/w , s/w cch ceh f0h f2h f4h f6h irq7 uart0 data receive uart0 data transmit uart1 data receive uart1 data transmit s/w s/w s/w s/w e8h eah ech eeh p4.4 external interrupt p4.5 external interrupt p4.6 external interrupt p4.7 external interrupt s/w s/w s/w s/w h/w , s/w h/w , s/w s/w s/w s/w   figure 5-2. s3c84bb/f84bb interrupt structure     

 s3c84bb/f84bb  interrupt structure     5-5   interrupt vector addresses  all interrupt vector addresses for the s3c84bb/f84bb interrupt structure are stored in the vector address area of  the internal 64-kbyte rom, 0h?ffffh (see figure 5-3).   you can allocate unused locations in the vector address area as normal program memory. if you do so, please be  careful not to overwrite any of the stored vector addresses (table 5-1 lists all vector addresses).  the program reset address in the rom is 0100h.  65,535 0 (decimal) 255 00h 0100h ffh ffffh (hex) reset  address interrupt vector area 64-kbyte memory area ~ ~ ~ ~   figure 5-3. rom vector address area        

 interrupt structure    s3c84bb/f84bb  5-6     table 5-1. interrupt vectors  vector address  request  reset/clear decimal  value  hex  value  interrupt source  interrupt  level  priority in  level  h/w s/w 256  100h  basic timer(wdt) overflow  resetb  -       246 f6h uart1 transmit  irq7 3      244 f4h uart1 receive    2      242 f2h uart0 transmit    1      240 f0h uart0 receive    0      238  eeh  p4.7 external interrupt  irq6  7       236  ech  p4.6 external interrupt    6       234  eah  p4.5 external interrupt    5       232  e8h  p4.4 external interrupt    4       230  e6h  p4.3 external interrupt    3       228  e4h  p4.2 external interrupt    2       226  e2h  p4.1 external interrupt    1       224  e0h  p4.0 external interrupt    0       206  ceh  p8.5 external interrupt  irq5  1       204  cch  p8.4 external interrupt    0       202 cah sio receive/transmit  irq4 -      198  c6h  timer 1(1) overflow  irq3  3        196  c4h  timer 1(1) match/capture    2        194  c2h  timer 1(0) overflow    1        192  c0h  timer 1(0) match/capture    0        190  beh  timer c(1) match/overflow  irq2  1        188  bch  timer c(0) match/overflow    0        200  c8h  timer b underflow  irq1  -       186  bah  timer a overflow  irq0  1        184  b8h  timer a match/capture    0        notes:  1.  interrupt priorities are identified in inverse order: "0" is the highest priority, "1" is the next highest, and so on.   2.  if two or more interrupts within the same level contend, the interrupt with the lowest vector address usually has priority    over one with a higher vector address. the priorities within a given level are fixed in hardware.     

 s3c84bb/f84bb  interrupt structure     5-7   enable/disable interrupt instructions (ei, di)  executing the enable interrupts (ei) instruction globally enables the interrupt structure. all interrupts are then  serviced as they occur according to the established priorities.   note  the system initialization routine executed after a reset must always contain an ei instruction to globally  enable the interrupt structure.   during the normal operation, you can execute the di (disable interrupt) instruction at any time to globally disable  interrupt processing. the ei and di instructions change the value of bit 0 in the sym register.  system-level interrupt control registers  in addition to the control registers for specific interrupt sources, four system-level registers control interrupt  processing:  ?  the interrupt mask register, imr, enables (un-masks) or disables (masks) interrupt levels.  ?  the interrupt priority register, ipr, controls the relative priorities of interrupt levels.  ?  the interrupt request register, irq, contains interrupt pending flags for each interrupt level (as opposed to  each interrupt source).   ?  the system mode register, sym, enables or disables global interrupt processing (sym settings also enable  fast interrupts and control the activity of external interface, if implemented).  table 5-2. interrupt control register overview  control register  id  r/w  function description  interrupt mask register  imr  r/w  bit settings in the imr register enable or disable interrupt  processing for each of the eight interrupt levels: irq0?irq7.   interrupt priority register  ipr  r/w  controls the relative processing priorities of the interrupt levels.  the seven levels of s3c84bb/f84bb are organized into three  groups: a, b, and c. group a is irq0 and irq1, group b is  irq2, irq3 and irq4, and group c is irq5, irq6, and irq7.  interrupt request register  irq  r  this register contains a request pending bit for each interrupt  level.   system mode register  sym  r/w  this register enables/disables fast interrupt processing,  dynamic global interrupt processing, and external interface  control (an external memory interface is not   implemented in the  s3c84bb/f84bb microcontroller).  note:   before imr register is changed to any value, all interrupts must be disable.      using di instruction is recommended. 

 interrupt structure    s3c84bb/f84bb  5-8     interrupt processing control points  interrupt processing can therefore be controlled in two ways: globally or by specific interrupt level and source. the  system-level control points in the interrupt structure are:  ?  global interrupt enable and disable (by ei and di instructions or by direct manipulation of sym.0)  ?  interrupt level enable/disable settings (imr register)  ?  interrupt level priority settings (ipr register)  ?  interrupt source enable/disable settings in the corresponding peripheral control registers  note  when writing an application program that handles interrupt processing, be sure to include the necessary  register file address (register pointer) information.                                      interrupt request register (read-only) irq0-irq7, interrupts interrupt mask register polling cycle interrupt priority register global interrupt control (ei, di or sym.0 manipulation) s r q reset ei vector interrupt cycle   figure 5-4. interrupt function diagram 

 s3c84bb/f84bb  interrupt structure     5-9   peripheral interrupt control registers  for each interrupt source there is one or more corresponding peripheral control registers that let you control the  interrupt generated by the related peripheral (see table 5-3).  table 5-3. interrupt source control and data registers  interrupt source  interrupt level  register(s)  location(s) in set 1  timer a overflow  irq0  tintpnd  e9h, bank 0  timer a match/capture    tacon  eah, bank 0      tadata  ebh, bank 0      tacnt  ech, bank 0  timer b underflow  irq1  tbcon  d0h, bank 0      tbdatah, tbdatal  d1h, d2h, bank 0  timer c(0) match/overflow  irq2  tccon0  f2h, bank 1  timer c(1) match/overflow    tccon1  f3h, bank 1      tcdata0  f0h, bank 1      tcdata1  f1h, bank 1  timer1(0) match/capture  irq3  t1datah0,t1datal0  e6h,e7h, bank 1  timer1(0) overflow    t1datah1,t1datal1  e8h,e9h, bank 1  timer1(1)match/capture    t1con0, t1con1  eah,ebh, bank1  timer1(1)overflow    t1cnth0, t1cntl0  ech, edh, bank1      t1cnth1, t1cntl1  eeh, efh, bank1  sio receive/transmit  irq4  siocon, siodata  e1h,e0h, bank1  p8.5 external interrupt  irq5  p8conh,p8conl  edh,eeh, bank0  p8.4 external interrupt    p8intpnd  efh, bank0  p4.7 external interrupt  irq6  p4conh  f6h, bank 0  p4.6 external interrupt    p4conl  f7h, bank 0  p4.5 external interrupt    p4int  fah, bank 0  p4.4 external interrupt    p4intpnd  fbh, bank 0  p4.3 external interrupt        p4.2 external interrupt        p4.1 external interrupt        p4.0 external interrupt        uart0 receive/transmit  irq7  uartcon0  e3h, bank 1  uart1 receive/transmit    uartcon1  fbh, bank 1      udata0, udata1  e2h, fah, bank 1      uartpnd  e5h, bank 1 

 interrupt structure    s3c84bb/f84bb  5-10     system mode register (sym)  the system mode register, sym (set 1, deh), is used to globally enable and disable interrupt processing (see  figure 5-5).   a reset clears sym.0 to "0".  the instructions ei and di enable and disable global interrupt processing, respectively, by modifying the bit 0 value  of the sym register. in order to enable interrupt processing an enable interrupt (ei) instruction must be included in  the initialization routine, which follows a reset operation. although you can manipulate sym.0 directly to enable and  disable interrupts during the normal operation, it is recommended to use the ei and di instructions for this  purpose.   system mode register (sym) deh, set 1, r/w .7 .6 .5 .4 .3 .2 .1 .0 msb lsb global interrupt enable bit: 0 = disable all interrupts processing 1 = enable all interrupts processing fast interrupt enable bit: 0 = disable fast interrupts processing 1 = enable fast interrupts processing fast interrupt level selection bits: 0   0   0 0   0   1 0   1   0 0   1   1 1   0   0 1   0   1 1   1   0 1   1   1 irq0 irq1 irq2 irq3 irq4 irq5 irq6 irq7 not  used for the s3c84bb/f84bb   figure 5-5. system mode register (sym) 

 s3c84bb/f84bb  interrupt structure     5-11   interrupt mask register (imr)  the interrupt mask register, imr (set 1, ddh) is used to enable or disable interrupt processing for individual  interrupt levels. after a reset, all imr bit values are undetermined and must therefore be written to their required  settings by the initialization routine.  each imr bit corresponds to a specific interrupt level: bit 1 to irq1, bit 2 to irq2, and so on. when the imr bit of  an interrupt level is cleared to "0", interrupt processing for that level is disabled (masked). when you set a level's  imr bit to "1", interrupt processing for the level is enabled (not masked).  the imr register is mapped to register location ddh in set 1. bit values can be read and written by instructions  using the register addressing mode.   interrupt mask register (imr) ddh ,set 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 irq0 interrupt level # enable bit 0 = disable irq# interrupt 1 = enable irq# interrupt irq1 irq2 irq3 irq4 irq5 irq6 irq7   figure 5-6. interrupt mask register (imr)         

 interrupt structure    s3c84bb/f84bb  5-12     interrupt priority register (ipr)  the interrupt priority register, ipr (set 1, bank 0, ffh), is used to set the relative priorities of the interrupt levels in  the microcontroller?s interrupt structure. after a reset, all ipr bit values are undetermined and must therefore be  written to their required settings by the initialization routine.  when more than one interrupt sources are active, the source with the highest priority level is serviced first. if two  sources belong to the same interrupt level, the source with the lower vector address usually has the priority (this  priority is fixed in hardware).   to support programming of the relative interrupt level priorities, they are organized into groups and subgroups by  the interrupt logic. please note that these groups (and subgroups) are used only by ipr logic for the ipr register  priority definitions (see figure 5-7):    group a  irq0, irq1    group b  irq2, irq3, irq4    group c  irq5, irq6, irq7  ipr group b irq2 b1 irq4 b2 irq3 b22 b21 ipr group a irq1 a2 irq0 a1 ipr group c c1 irq7 c2 irq6 c22 c21 irq5   figure 5-7. interrupt request priority groups  as you can see in figure 5-8, ipr.7, ipr.4, and ipr.1 control the relative priority of interrupt groups a, b, and c.  for example, the setting "001b" for these bits would select the group relationship b > c > a. the setting "101b"  would select the relationship c > b > a.   the functions of the other ipr bit settings are as follows:  ?  ipr.5 controls the relative priorities of group c interrupts.   ?  interrupt group c includes a subgroup that has an additional priority relationship among the interrupt levels 5,  6, and 7. ipr.6 defines the subgroup c relationship. ipr.5 controls the interrupt group c.  ?  ipr.0 controls the relative priority setting of irq0 and irq1 interrupts.  

 s3c84bb/f84bb  interrupt structure     5-13   group a 0 = irq0 > irq1 1 = irq1 > irq0 subgroup b 0 = irq3 > irq4 1 = irq4 > irq3 group c 0 = irq5 > (irq6, irq7) 1 = (irq6, irq7) > irq5 subgroup c 0 = irq6 > irq7 1 = irq7 > irq6 group b 0 = irq2 > (irq3, irq4) 1 = (irq3, irq4) > irq2 interrupt priority register (ipr) ffh ,set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 group priority: 0     0     0  =  undefined 0     0     1  =  b > c > a 0     1     0  =  a > b >c 0     1     1  =  b > a > c 1     0     0  =  c > a > b 1     0     1  =  c > b > a 1     1     0  =  a > c > b 1     1     1  =  undefined d7 d4 d1   figure 5-8. interrupt priority register (ipr) 

 interrupt structure    s3c84bb/f84bb  5-14     interrupt request register (irq)  you can poll bit values in the interrupt request register, irq (set 1, dch), to monitor interrupt request status for all  levels in the microcontroller?s interrupt structure. each bit corresponds to the interrupt level of the same number:  bit 0 to irq0, bit 1 to irq1, and so on. a "0" indicates that no interrupt request is currently being issued for that  level. a "1" indicates that an interrupt request has been generated for that level.  irq bit values are read-only addressable using register addressing mode. you can read (test) the contents of the  irq register at any time using bit or byte addressing to determine the current interrupt request status of specific  interrupt levels. after a reset, all irq status bits are cleared to ?0?.  you can poll irq register values even if a di instruction has been executed (that is, if global interrupt processing is  disabled). if an interrupt occurs while the interrupt structure is disabled, the cpu will not service it. you can,  however, still detect the interrupt request by polling the irq register. in this way, you can determine which events  occurred while the interrupt structure was globally disabled.  interrupt request register (irq) dch ,set 1, r lsb msb .7 .6 .5 .4 .3 .2 .1 .0 irq0 interrupt level # request pending bit 0 = irq# interrupt is not pending 1 = irq# interrupt is pending irq1 irq2 irq3 irq4 irq5 irq6 irq7   figure 5-9. interrupt request register (irq) 

 s3c84bb/f84bb  interrupt structure     5-15   interrupt pending function types  overview  there are two types of interrupt pending bits: one type that is automatically cleared by hardware after the interrupt  service routine is acknowledged and executed; the other that must be cleared in the interrupt service routine.  pending bits cleared automatically by hardware  for interrupt pending bits that are cleared automatically by hardware, interrupt logic sets the corresponding  pending bit to "1" when a request occurs. it then issues an irq pulse to inform the cpu that an interrupt is waiting  to be serviced. the cpu acknowledges the interrupt source by sending an iack, executes the service routine, and  clears the pending bit to "0". this type of pending bit is not mapped and cannot, therefore, be read or written by  application software.  in the s3c84bb/f84bb interrupt structure, the timer b underflow interrupt (irq1) belongs to this category of  interrupts in which pending condition is cleared automatically by hardware.   pending bits cleared by the service routine  the second type of pending bit is the one that should be cleared by program software. the service routine must  clear the appropriate pending bit before a return-from-interrupt subroutine (iret) occurs. to do this, a "0" must be  written to the corresponding pending bit location in the source?s mode or control register.   in the s3c84bb/f84bb interrupt structure, pending conditions for irq4, irq5, irq6, and irq7 must be cleared in  the interrupt service routine. 

 interrupt structure    s3c84bb/f84bb  5-16     interrupt source polling sequence  the interrupt request polling and servicing sequence is as follows:  1.  a source generates an interrupt request by setting the interrupt request bit to "1".  2.  the cpu polling procedure identifies a pending condition for that source.  3.  the cpu checks the source's interrupt level.  4.  the cpu generates an interrupt acknowledge signal.  5.  interrupt logic determines the interrupt's vector address.  6.  the service routine starts and the source's pending bit is cleared to "0" (by hardware or by software).  7.  the cpu continues polling for interrupt requests.  interrupt service routines  before an interrupt request is serviced, the following conditions must be met:  ?  interrupt processing must be globally enabled (ei, sym.0 = "1")  ?  the interrupt level must be enabled (imr register)  ?  the interrupt level must have the highest priority if more than one level is currently requesting service  ?  the interrupt must be enabled at the interrupt's source (peripheral control register)  when all the above conditions are met, the interrupt request is acknowledged at the end of the instruction cycle.  the cpu then initiates an interrupt machine cycle that completes the following processing sequence:  1.  reset (clear to "0") the interrupt enable bit in the sym register (sym.0) to disable all subsequent interrupts.  2.  save the program counter (pc) and status flags to the system stack.  3.  branch to the interrupt vector to fetch the address of the service routine.  4.  pass control to the interrupt service routine.  when the interrupt service routine is completed, the cpu issues an interrupt return (iret). the iret restores the  pc and status flags, setting sym.0 to "1". it allows the cpu to process the next interrupt request. 

 s3c84bb/f84bb  interrupt structure     5-17   generating interrupt vector addresses  the interrupt vector area in the rom (00h?ffh) contains the addresses of interrupt service routines that  correspond to each level in the interrupt structure. vectored interrupt processing follows this sequence:  1.  push the program counter's low-byte value to the stack.  2.  push the program counter's high-byte value to the stack.  3.  push the flag register values to the stack.  4.  fetch the service routine's high-byte address from the vector location.  5.  fetch the service routine's low-byte address from the vector location.  6.  branch to the service routine specified by the concatenated 16-bit vector address.  note  a 16-bit vector address always begins at an even-numbered rom address within the range of 00h?ffh.   nesting of vectored interrupts  it is possible to nest a higher-priority interrupt request while a lower-priority request is being serviced. to do this,  you must follow these steps:  1.  push the current 8-bit interrupt mask register (imr) value to the stack (push imr).  2.  load the imr register with a new mask value that enables only the higher priority interrupt.  3.  execute an ei instruction to enable interrupt processing (a higher priority interrupt will be processed if it  occurs).  4.  when the lower-priority interrupt service routine ends, restore the imr to its original value by returning the  previous mask value from the stack (pop imr).  5.  execute an iret.  depending on the application, you may be able to simplify the procedure above to some extent.       

 interrupt structure    s3c84bb/f84bb  5-18     notes     

 s3c84bb/f84bb  instruction set     6-1    instruction set  overview  the instruction set is specifically designed to support large register files that are typical of most s3c8-series  microcontrollers. there are 78 instructions. the powerful data manipulation capabilities and features of the  instruction set include:  ?  a full complement of 8-bit arithmetic and logic operations, including multiply and divide  ?  no special i/o instructions (i/o control/data registers are mapped directly into the register file)  ?  decimal adjustment included in binary-coded decimal (bcd) operations  ?  16-bit (word) data can be incremented and decremented  ?  flexible instructions for bit addressing, rotate, and shift operations  data types  the cpu performs operations on bits, bytes, bcd digits, and two-byte words. bits in the register file can be set,  cleared, complemented, and tested. bits within a byte are numbered from 7 to 0, where bit 0 is the least significant  (right-most) bit.  register addressing  to access an individual register, an 8-bit address in the range 0?255 or the 4-bit address of a working register is  specified. paired registers can be used to construct 16-bit data, 16-bit program memory or data memory  addresses. for detailed information about register addressing, please refer to chapter 2, "address spaces."   addressing modes  there are seven explicit addressing modes: register (r), indirect register (ir), indexed (x), direct (da), relative  (ra), immediate (im), and indirect (ia). for detailed descriptions of these addressing modes, please refer to  chapter 3, "addressing modes." 

 instruction set    s3c84bb/f84bb  6-2     table 6-1. instruction group summary  mnemonic operands  instruction    load instructions   clr dst  clear  ld dst,src load  ldb dst,src load bit  lde  dst,src  load external data memory  ldc  dst,src  load program memory  lded  dst,src  load external data memory and decrement  ldcd  dst,src  load program memory and decrement  ldei  dst,src  load external data memory and increment  ldci  dst,src  load program memory and increment  ldepd  dst,src  load external data memory with pre-decrement  ldcpd  dst,src  load program memory with pre-decrement  ldepi  dst,src  load external data memory with pre-increment  ldcpi  dst,src  load program memory with pre-increment  ldw dst,src load word  pop  dst  pop from stack  popud  dst,src  pop user stack (decrementing)  popui  dst,src  pop user stack (incrementing)  push  src  push to stack  pushud  dst,src  push user stack (decrementing)  pushui  dst,src  push user stack (incrementing)  note:  lde, lded, ldei, ldepp, and ldepi instructions can be used to read/write the data from the 64-kbyte data    memory.    

 s3c84bb/f84bb  instruction set     6-3   table 6-1. instruction group summary (continued)  mnemonic operands  instruction    arithmetic instructions  adc  dst,src  add with carry  add dst,src add  cp dst,src compare  da dst decimal adjust  dec dst  decrement  decw dst  decrement word  div dst,src divide  inc dst  increment  incw dst  increment word  mult dst,src multiply  sbc  dst,src  subtract with carry  sub dst,src subtract    logic instructions   and dst,src logical and  com dst  complement  or dst,src logical or  xor  dst,src  logical exclusive or   

 instruction set    s3c84bb/f84bb  6-4     table 6-1. instruction group summary (continued)  mnemonic operands  instruction    program control instructions  btjrf  dst,src  bit test and jump relative on false  btjrt  dst,src  bit test and jump relative on true  call dst  call procedure  cpije  dst,src  compare, increment and jump on equal  cpijne  dst,src  compare, increment and jump on non-equal  djnz  r,dst  decrement register and jump on non-zero  enter   enter  exit   exit  iret   interrupt return  jp  cc,dst  jump on condition code  jp dst jump unconditional  jr  cc,dst  jump relative on condition code  next   next  ret   return  wfi    wait for interrupt    bit manipulation instructions  band dst,src bit and  bcp dst,src bit compare  bitc dst  bit complement  bitr dst  bit reset  bits dst  bit set  bor dst,src bit or  bxor dst,src bit xor  tcm  dst,src  test complement under mask  tm  dst,src  test under mask   

 s3c84bb/f84bb  instruction set     6-5   table 6-1. instruction group summary (concluded)  mnemonic operands  instruction    rotate and shift instructions  rl dst rotate left  rlc  dst  rotate left through carry  rr dst  rotate right  rrc  dst  rotate right through carry  sra  dst  shift right arithmetic  swap dst  swap nibbles    cpu control instructions  ccf    complement carry flag  di   disable interrupts  ei   enable interrupts  idle    enter idle mode  nop   no operation  rcf    reset carry flag  sb0    set bank 0  sb1    set bank 1  scf    set carry flag  srp  src  set register pointers  srp0  src  set register pointer 0  srp1  src  set register pointer 1  stop    enter stop mode   

 instruction set    s3c84bb/f84bb  6-6     flags register (flags)  the flags register flags contains eight bits which describe the current status of cpu operations. four of these  bits, flags.7?flags.4, can be tested and used with conditional jump instructions. two other flag bits, flags.3  and flags.2, are used for bcd arithmetic.   the flags register also contains a bit to indicate the status of fast interrupt processing (flags.1) and a bank  address status bit (flags.0) to indicate whether register bank 0 or bank 1 is currently being addressed.  flags register can be set or reset by instructions as long as its outcome does not affect the flags, such as, load  instruction. logical and arithmetic instructions such as, and, or, xor, add, and sub can affect the flags  register. for example, the and instruction updates the zero, sign and overflow flags based on the outcome of the  and instruction. if the and instruction uses the flags register as the destination, then two write will simultaneously  occur to the flags register producing an unpredictable result.  system flags register (flags) d5h ,set 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 bank address status flag (ba) fast interrupt status flag (fs) half-carry flag (h) decimal adjust flag (d) carry flag (c) zero flag (z) sign flag (s) overflow flag (v)   figure 6-1. system flags register (flags) 

 s3c84bb/f84bb  instruction set     6-7   flag descriptions  c   carry flag (flags.7)  the c flag is set to "1" if the result from an arithmetic operation generates a carry-out from or a borrow to  the bit 7 position (msb). after rotate and shift operations have been performed, it contains the last value  shifted out of the specified register. program instructions can set, clear, or complement the carry flag.  z   zero flag (flags.6)  for arithmetic and logic operations, the z flag is set to "1" if the result of the operation is zero. in  operations that test register bits, and in shift and rotate operations, the z flag is set to "1" if the result is  logic zero.  s   sign flag (flags.5)   following arithmetic, logic, rotate, or shift operations, the sign bit identifies the state of the msb of the  result. a logic zero indicates a positive number and a logic one indicates a negative number.  v   overflow flag (flags.4)   the v flag is set to "1" when the result of a two's-complement operation is greater than + 127 or less than  ? 128. it is cleared to "0" after a logic operation has been performed.  d   decimal adjust flag (flags.3)   the da bit is used to specify what type of instruction was executed last during bcd operations so that a  subsequent decimal adjust operation can execute correctly. the da bit is not usually accessed by  programmers, and it cannot be addressed as a test condition.  h   half-carry flag (flags.2 )   the h bit is set to "1" whenever an addition generates a carry-out of bit 3, or when a subtraction borrows  out of bit 4. it is used by the decimal adjust (da) instruction to convert the binary result of a previous  addition or subtraction into the correct decimal (bcd) result. the h flag is normally not accessed directly  by a program.  fis   fast interrupt status flag (flags.1)   the fis bit is set during a fast interrupt cycle and reset during the iret following interrupt servicing. when  set, it inhibits all interrupts and causes the fast interrupt return to be executed when the iret instruction is  executed.  ba   bank address flag (flags.0)    the ba flag indicates which register bank in the set 1 area of the internal register file is currently selected,  bank 0 or bank 1. the ba flag is cleared to "0" (select bank 0) when the sb0 instruction is executed and is  set to "1" (select bank 1) when the sb1 instruction is executed. 

 instruction set    s3c84bb/f84bb  6-8     instruction set notation  table 6-2. flag notation conventions  flag description  c carry flag  z zero flag  s sign flag  v overflow flag  d decimal-adjust flag  h half-carry flag  0  cleared to logic zero  1  set to logic one  *   set or cleared according to operation  ?  value is unaffected  x  value is undefined  table 6-3. instruction set symbols  symbol description  dst destination operand  src source operand  @  indirect register address prefix  pc program counter  ip instruction pointer  flags  flags register (d5h)  rp register pointer  #  immediate operand or register address prefix  h  hexadecimal number suffix  d  decimal number suffix  b  binary number suffix  opc opcode   

 s3c84bb/f84bb  instruction set     6-9   table 6-4. instruction notation conventions  notation  description  actual operand range  cc  condition code  see list of condition codes in table 6-6.  r  working register only  rn  (n = 0?15)  rb  bit (b) of working register  rn.b  (n = 0?15, b = 0?7)  r0  bit 0 (lsb) of working register  rn (n = 0?15)  rr  working register pair  rrp  (p = 0, 2, 4, ..., 14)  r  register or working register  reg or rn  (reg = 0?255, n = 0?15)  rb  bit "b" of register or working register  reg.b  (reg = 0?255, b = 0?7)  rr  register pair or working register pair   reg or rrp  (reg = 0?254, even number only,   where p = 0, 2, ..., 14)  ia  indirect addressing mode  addr  (addr = 0?254, even number only)  ir  indirect working register only  @rn  (n = 0?15)  ir  indirect register or indirect working register @rn or @reg  (reg = 0?255, n = 0?15)  irr  indirect working register pair only  @rrp  (p = 0, 2, ..., 14)  irr  indirect register pair or indirect working  register pair  @rrp or @reg  (reg = 0?254, even only,   where p = 0, 2, ..., 14)  x  indexed addressing mode  #reg[rn]  (reg = 0?255, n = 0?15)  xs  indexed (short offset) addressing mode  #addr[rrp]  (addr = range ?128 to +127,   where p = 0, 2, ..., 14)  xl  indexed (long offset) addressing mode  #addr [rrp]  (addr = range 0?65535, where  p = 2, ..., 14)  da  direct addressing mode  addr  (addr = range 0?65535)  ra  relative addressing mode  addr  (addr = a number from  +127 to ?128 that is an  offset relative to the address of the next instruction)  im  immediate addressing mode  #data  (data = 0?255)  iml  immediate (long) addressing mode  #data  (data = 0?65535)   

 instruction set    s3c84bb/f84bb  6-10     table 6-5. opcode quick reference  opcode map   lower nibble (hex)     ? 0 1 2 3 4 5 6 7  u 0  dec  r1  dec  ir1  add  r1,r2  add  r1,ir2  add  r2,r1  add  ir2,r1  add  r1,im  bor  r0?rb  p 1  rlc  r1  rlc  ir1  adc  r1,r2  adc  r1,ir2  adc  r2,r1  adc  ir2,r1  adc  r1,im  bcp  r1.b, r2  p 2  inc  r1  inc  ir1  sub  r1,r2  sub  r1,ir2  sub  r2,r1  sub  ir2,r1  sub  r1,im  bxor  r0?rb  e 3  jp  irr1  srp/0/1  im  sbc  r1,r2  sbc  r1,ir2  sbc  r2,r1  sbc  ir2,r1  sbc  r1,im  btjr  r2.b, ra r 4  da  r1  da  ir1  or  r1,r2  or  r1,ir2  or  r2,r1  or  ir2,r1  or  r1,im  ldb  r0?rb   5  pop  r1  pop  ir1  and  r1,r2  and  r1,ir2  and  r2,r1  and  ir2,r1  and  r1,im  bitc  r1.b  n 6  com  r1  com  ir1  tcm  r1,r2  tcm  r1,ir2  tcm  r2,r1  tcm  ir2,r1  tcm  r1,im  band  r0?rb  i 7  push  r2  push  ir2  tm  r1,r2  tm  r1,ir2  tm  r2,r1  tm  ir2,r1  tm  r1,im  bit  r1.b  b 8  decw  rr1  decw  ir1  pushud ir1,r2  pushui ir1,r2  mult  r2,rr1  mult  ir2,rr1  mult  im,rr1  ld  r1, x, r2  b 9  rl  r1  rl  ir1  popud  ir2,r1  popui  ir2,r1  div  r2,rr1  div  ir2,rr1  div  im,rr1  ld  r2, x, r1  l a  incw  rr1  incw  ir1  cp  r1,r2  cp  r1,ir2  cp  r2,r1  cp  ir2,r1  cp  r1,im  ldc  r1, irr2, xl e b  clr  r1  clr  ir1  xor  r1,r2  xor  r1,ir2  xor  r2,r1  xor  ir2,r1  xor  r1,im  ldc  r2, irr2, xl  c  rrc  r1  rrc  ir1  cpije  ir,r2,ra  ldc  r1,irr2  ldw  rr2,rr1 ldw  ir2,rr1  ldw  rr1,iml  ld  r1, ir2  h d  sra  r1  sra  ir1  cpijne  irr,r2,ra ldc  r2,irr1  call  ia1   ld  ir1,im  ld  ir1, r2  e e  rr  r1  rr  ir1  ldcd  r1,irr2  ldci  r1,irr2  ld  r2,r1  ld  r2,ir1  ld  r1,im  ldc  r1, irr2, xs x f  swap  r1  swap  ir1  ldcpd  r2,irr1  ldcpi  r2,irr1  call  irr1  ld  ir2,r1  call  da1  ldc  r2, irr1, xs  

 s3c84bb/f84bb  instruction set     6-11   table 6-5. opcode quick reference (continued)  opcode map   lower nibble (hex)    ?  8  9  a  b  c  d  e  f  u 0  ld  r1,r2  ld  r2,r1  djnz  r1,ra  jr  cc,ra  ld  r1,im  jp  cc,da  inc  r1  next  p 1                       enter    p 2        exit    e 3        wfi    r 4        sb0     5        sb1    n 6        idle    i 7                       stop    b 8        di    b 9        ei    l a        ret    e b        iret     c        rcf    h d                       scf    e e        ccf    x f  ld  r1,r2  ld  r2,r1  djnz  r1,ra  jr  cc,ra  ld  r1,im  jp  cc,da  inc  r1  nop     

 instruction set    s3c84bb/f84bb  6-12     condition codes  the opcode of a conditional jump always contains a 4-bit field called the condition code (cc). this specifies under  which conditions it is to execute the jump. for example, a conditional jump with the condition code for "equal" after  a compare operation only jumps if the two operands are equal. condition codes are listed in table 6-6.  the carry (c), zero (z), sign (s), and overflow (v) flags are used to control the operation of conditional jump  instructions.  table 6-6. condition codes  binary mnemonic  description  flags set  0000 f  always false  ?  1000 t  always true  ?  0111  (1)   c  carry  c = 1  1111  (1)   nc  no carry  c = 0  0110  (1)   z  zero  z = 1  1110  (1)   nz  not zero  z = 0  1101  pl  plus  s = 0  0101  mi  minus  s = 1  0100  ov  overflow  v = 1  1100  nov  no overflow  v = 0  0110  (1)   eq  equal  z = 1  1110  (1)   ne  not equal  z = 0  1001  ge  greater than or equal  (s  xor  v) = 0  0001  lt  less than  (s  xor  v) = 1  1010  gt  greater than  (z  or (s  xor  v)) = 0  0010  le  less than or equal  (z  or (s  xor  v)) = 1  1111  (1)   uge  unsigned greater than or equal  c = 0  0111  (1)   ult  unsigned less than  c = 1  1011  ugt  unsigned greater than  (c = 0  and  z = 0) = 1  0011  ule  unsigned less than or equal  (c  or  z) = 1  notes:   1.  it indicate condition codes which are related to two different mnemonics but which test the same flag. for     example, z and eq are both true if the zero flag (z) is set, but after an add instruction, z would probably be used.     following a cp instruction, you would probably want to use the instruction eq.  2.  for operations using unsigned numbers, the special condition codes uge, ult, ugt, and ule must be used. 

 s3c84bb/f84bb  instruction set     6-13   instruction descriptions  this chapter contains detailed information and programming examples for each instruction in the s3c8-series  instruction set. information is arranged in a consistent format for improved readability and for quick reference. the  following information is included in each instruction description:  ?  instruction name (mnemonic)  ?  full instruction name  ?  source/destination format of the instruction operand  ?  shorthand notation of the instruction's operation  ?  textual description of the instruction's effect  ?  flag settings that may be affected by the instruction  ?  detailed description of the instruction's format, execution time, and addressing mode(s)  ?  programming example(s) explaining how to use the instruction   

 instruction set    s3c84bb/f84bb  6-14     adc  ? add with carry  adc  dst,src  operation:    dst      dst + src + c  the source operand, along with the carry flag setting, is added to the destination operand and the  sum is stored in the destination. the contents of the source are unaffected. two's-complement  addition is performed. in multiple-precision arithmetic, this instruction lets the carry value from the  addition of low-order operands be carried into the addition of high-order operands.  flags:      c:    set if there is a carry from the most significant bit of the result; cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurs, that is, if both operands are of the same sign and the                  result is of the opposite sign; cleared otherwise.       d:    always cleared to "0".  h:    set if there is a carry from the most significant bit of the low-order four bits of the result;           cleared otherwise.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  12  r  r          6 13 r lr   opc src dst   3 6 14 r r           15 r ir   opc dst src   3 6 16 r im    examples:  given:  r1  =  10h, r2  =  03h, c flag =  "1", register 01h  =  20h, register 02h  =  03h, and     register 03h  =  0ah:   adc r1,r2     r1  =  14h, r2  =  03h   adc r1,@r2     r1  =  1bh, r2  =  03h   adc 01h,02h     register 01h  =  24h, register 02h  =  03h   adc 01h,@02h     register 01h  =  2bh, register 02h  =  03h   adc 01h,#11h     register 01h  =  32h          in the first example, the destination register r1 contains the value 10h, the carry flag is set to "1"                   and the source working register r2 contains the value 03h. the statement "adc  r1,r2" adds           03h and the carry flag value ("1") to the destination value 10h, leaving 14h in the register r1. 

 s3c84bb/f84bb  instruction set     6-15   add   ? add  add  dst,src  operation:    dst       dst  +  src  the source operand is added to the destination operand and the sum is stored in the destination.  the contents of the source are unaffected. two's-complement addition is performed.  flags:      c:    set if there is a carry from the most significant bit of the result; cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if both operands are of the same sign and the                  result is of the opposite sign; cleared otherwise.       d:    always cleared to "0".       h:    set if a carry from the low-order nibble occurred.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  02  r  r          6 03 r lr                 opc src dst   3 6 04 r r           05 r ir                 opc dst src   3 6 06 r im    examples:  given:  r1 = 12h, r2 = 03h, register 01h = 21h, register 02h = 03h, register 03h = 0ah:   add r1,r2     r1  =  15h, r2  =  03h   add r1,@r2     r1  =  1ch, r2  =  03h   add 01h,02h     register 01h  =  24h, register 02h  =  03h   add 01h,@02h     register 01h  =  2bh, register 02h  =  03h   add 01h,#25h     register 01h  =  46h          in the first example, the destination working register r1 contains 12h and the source working           register r2 contains 03h. the statement "add  r1,r2" adds 03h to 12h, leaving the value 15h       in the register r1. 

 instruction set    s3c84bb/f84bb  6-16     and ?  logical and   and  dst,src  operation:    dst      dst and src  the source operand is logically anded with the destination operand. the result is stored in the  destination. the and operation causes a "1" bit to be stored whenever the corresponding bits in  the two operands are both logic ones; otherwise a "0" bit value is stored. the contents of the  source are unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always cleared to "0".       d:    unaffected.       h:    unaffected.     format:         bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  52  r  r          6 53 r lr                 opc src dst   3 6 54 r r           55 r ir                 opc dst src   3 6 56 r im    examples:  given: r1  =  12h, r2  =  03h, register 01h  =  21h, register 02h  =  03h, register 03h  =  0ah:   and r1,r2     r1  =  02h, r2  =  03h   and r1,@r2     r1  =  02h, r2 =  03h   and 01h,02h     register 01h  =  01h, register 02h  =  03h   and 01h,@02h     register 01h  =  00h, register 02h  =  03h   and 01h,#25h     register 01h  =  21h          in the first example, the destination working register r1 contains the value 12h and the source          working register r2 contains 03h. the statement "and r1,r2" logically ands the source           operand 03h with the destination operand value 12h, leaving the value 02h in the register r1.  

 s3c84bb/f84bb  instruction set     6-17   band   ? bit and  band  dst,src.b  band  dst.b,src  operation:  dst(0)      dst(0)  and  src(b)    or   dst(b)      dst(b)  and  src(0)  the specified bit of the source (or the destination) is logically anded with the zero bit (lsb) of the  destination (or the source). the resultant bit is stored in the specified bit of the destination. no  other bits of the destination are affected. the source is unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    cleared to "0".       v:    undefined.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc  dst | b | 0  src   3  6  67 r0 rb                 opc  src | b | 1  dst   3  6  67 rb r0      note:   in the second byte of the 3-byte instruction formats, the destination (or the source) address is              four bits, the bit address "b" is three bits, and the lsb address value is one bit in    length.  examples:  given:  r1 = 07h and register 01h = 05h:   band r1,01h.1     r1  =  06h, register 01h =  05h   band 01h.1,r1     register 01h  =  05h, r1  =  07h          in the first example, the source register 01h contains the value 05h (00000101b) and the           destination working register r1 contains 07h (00000111b). the statement "band  r1,01h.1"           ands the bit 1 value of the source register ("0") with the bit 0 value of the register r1           (destination), leaving the value 06h (00000110b) in the register r1. 

 instruction set    s3c84bb/f84bb  6-18     bcp  ? bit compare  bcp  dst,src.b  operation:    dst(0) ? src(b)  the specified bit of the source is compared to (subtracted from) bit zero (lsb) of the destination.  the zero flag is set if the bits are the same; otherwise it is cleared. the contents of both operands  are unaffected by the comparison.  flags:   c:    unaffected.       z:    set if the two bits are the same; cleared otherwise.       s:    cleared to "0".       v:    undefined.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc   dst | b | 0  src   3  6  17 r0 rb      note :  in the second byte of the instruction format, the destination address is four bits, the bit                                  address "0" is three bits, and the lsb address value is one bit in length.               example:  given:  r1  =  07h and register 01h  =  01h:   bcp r1,01h.1     r1  =  07h, register 01h  =  01h  if the destination working register r1 contains the value 07h (00000111b) and the source register  01h contains the value 01h (00000001b), the statement "bcp  r1,01h.1" compares bit one of the  source register (01h) and bit zero of the destination register (r1). because the bit values are not  identical, the zero flag bit (z) is cleared in the flags register (0d5h). 

 s3c84bb/f84bb  instruction set     6-19   bitc   ? bit complement  bitc  dst.b  operation:  dst(b)      not dst(b)  this instruction complements the specified bit within the destination without affecting any other bit  in the destination.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    cleared to "0".       v:    undefined.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc  dst | b | 0      2 4 57  rb      note :  in the second byte of the instruction format, the destination address is four bits, the bit                          address ?b? is three bits, and the lsb address value is one bit in length.  example:  given:  r1  =  07h   bitc r1.1     r1  =  05h  if the working register r1 contains the value 07h (00000111b), the statement "bitc  r1.1"  complements bit one of the destination and leaves the value 05h (00000101b) in the register r1.  because the result of the complement is not "0", the zero flag (z) in the flags register (0d5h) is  cleared.        

 instruction set    s3c84bb/f84bb  6-20     bitr   ? bit reset   bitr  dst.b  operation:    dst(b)      0  the bitr instruction clears the specified bit within the destination without affecting any other bit in  the destination.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc  dst | b | 0      2 4 77  rb      note :  in the second byte of the instruction format, the destination address is four bits, the bit                          address ?0? is three bits, and the lsb address value is one bit in length.  example:  given:  r1  =  07h:   bitr r1.1     r1  =  05h  if the value of the working register r1 is 07h (00000111b), the statement "bitr  r1.1" clears bit  one of the destination register r1, leaving the value 05h (00000101b). 

 s3c84bb/f84bb  instruction set     6-21   bits  ? bit set  bits  dst.b  operation:    dst(b)       1  the bits instruction sets the specified bit within the destination without affecting any other bit in  the destination.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc  dst | b | 1     2 4 77  rb      note:   in the second byte of the instruction format, the destination address is four bits, the bit                         address ?b? is three bits, and the lsb address value is one bit in length.  example:  given:  r1  =  07h:   bits r1.3     r1  =  0fh  if the working register r1 contains the value 07h (00000111b), the statement "bits  r1.3" sets  bit three of the destination register r1 to "1", leaving the value 0fh (00001111b). 

 instruction set    s3c84bb/f84bb  6-22     bor   ? bit or  bor  dst,src.b  bor  dst.b,src  operation:    dst(0)      dst(0)  or  src(b)       or      dst(b)      dst(b)  or  src(0)  the specified bit of the source (or the destination) is logically ored with bit zero (lsb) of the  destination (or the source). the resulting bit value is stored in the specified bit of the destination.  no other bits of the destination are affected. the source is unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    cleared to "0".       v:    undefined.       d:    unaffected.       h:    unaffected.  format:         bytes cycles opcode  (hex)  addr mode  dst        src    opc  dst | b | 0   src   3  6  07 r0 rb                 opc  src | b | 1   dst   3  6  07 rb r0             note :  in the second byte of the 3-byte instruction format, the destination (or the source)                             address is four bits, the bit address ?b? is three bits, and the lsb address value is          one bit.  examples:  given:  r1  =  07h and register 01h  =  03h:   bor r1, 01h.1     r1 = 07h, register 01h = 03h   bor 01h.2, r1     register 01h = 07h, r1 = 07h  in the first example, the destination working register r1 contains the value 07h (00000111b) and  the source register 01h the value 03h (00000011b). the statement "bor  r1,01h.1" logically   ors bit one of the register 01h (source) with bit zero of r1 (destination). this leaves the same  value (07h) in the working register r1.  in the second example, the destination register 01h contains the value 03h (00000011b) and the  source working register r1 the value 07h (00000111b). the statement "bor 01h.2,r1" logically  ors bit two of the register 01h (destination) with bit zero of r1 (source). this leaves the value  07h in the register 01h. 

 s3c84bb/f84bb  instruction set     6-23   btjrf  ? bit test, jump relative on false  btjrf  dst,src.b  operation:    if src(b) is a "0", then pc      pc  +  dst  the specified bit within the source operand is tested. if it is a "0", the relative address is added to  the program counter and control passes to the statement whose address is currently in the  program counter. otherwise, the instruction following the btjrf instruction is executed.  flags:     no flags are affected.  format:        (note)      bytes cycles opcode  (hex)  addr mode  dst        src    opc  src | b | 0  dst   3 10  37 ra rb      note:  in the second byte of the instruction format, the source address is four bits, the bit address "b"               is three   bits, and the lsb address value is one bit in length.  example:  given:  r1  =  07h:   btjrf skip,r1.3      pc jumps to skip location  if the working register r1 contains the value 07h (00000111b), the statement "btjrf skip,r1.3"  tests bit 3. because it is "0", the relative address is added to the pc and the pc jumps to the  memory location pointed to by the skip (remember that the memory location must be within the  allowed range of  + 127  to  ? 128). 

 instruction set    s3c84bb/f84bb  6-24     btjrt   ? bit test, jump relative on true  btjrt  dst,src.b  operation:    if src(b) is a "1", then pc       pc  +  dst  the specified bit within the source operand is tested. if it is a "1", the relative address is added to  the program counter and control passes to the statement whose address is now in the pc.  otherwise, the instruction following the btjrt instruction is executed.  flags:     no flags are affected.  format:        (note)      bytes cycles opcode  (hex)  addr mode  dst       src   opc  src | b | 1  dst   3 10  37 ra rb      note:   in the second byte of the instruction format, the source address is four bits, the bit address "b" is               three bits, and the lsb address value is one bit in length.  example:  given:  r1  =  07h:   btjrt skip,r1.1  if the working register r1 contains the value 07h (00000111b), the statement "btjrt skip,r1.1"  tests bit one in the source register (r1). because it is a "1", the relative address is added to the  pc and the pc jumps to the memory location pointed to by the skip.   remember that the memory location addressed by the btjrt instruction must be within the  allowed range of  + 127  to  ? 128. 

 s3c84bb/f84bb  instruction set     6-25   bxor   ? bit xor  bxor     dst,src.b  bxor  dst.b,src  operation:    dst(0)      dst(0)  xor  src(b)       or      dst(b)      dst(b)  xor  src(0)  the specified bit of the source (or the destination) is logically exclusive-ored with bit zero (lsb)   of the destination (or the source). the result bit is stored in the specified bit of the destination. no  other bits of the destination are affected. the source is unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    cleared to "0".       v:    undefined.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc  dst | b | 0   src   3  6  27 r0 rb                 opc  src | b | 1   dst   3  6  27 rb r0      note :  in the second byte of the 3-byte instruction format, the destination (or the source) address is four               bits, the bit address "b" is three bits, and the lsb address value is one bit in length.  examples:  given:  r1  =  07h (00000111b) and register 01h  =  03h (00000011b):   bxor r1,01h.1     r1  =  06h, register 01h  =  03h   bxor 01h.2,r1     register 01h  =  07h, r1  =  07h  in the first example, the destination working register r1 has the value 07h (00000111b) and the  source register 01h has the value 03h (00000011b). the statement "bxor  r1,01h.1" exclusive- ors bit one of the register 01h (the source) with bit zero of r1 (the destination). the result bit  value is stored in bit zero of r1, changing its value from 07h to 06h. the value of the source  register 01h is unaffected. 

 instruction set    s3c84bb/f84bb  6-26     call   ? call procedure   call  dst  operation:  sp       sp?1   @sp       pcl   sp       sp?1   @sp       pch   pc       dst  the contents of the program counter are pushed onto the top of the stack. the program counter  value used is the address of the first instruction following the call instruction. the specified  destination address is then loaded into the program counter and points to the first instruction of a  procedure. at the end of the procedure the return instruction (ret) can be used to return to the  original program flow. ret pops the top of the stack back into the program counter.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc  dst    3 14 f6  da   opc dst    2 12 f4 irr   opc dst    2 14 d4  ia    examples:  given:   r0  =  35h, r1  = 21h, pc  =  1a47h, and sp  =  0002h:   call 3521h     sp  =  0000h              (memory locations 0000h  =  1ah, 0001h  =  4ah,              where, 4ah is the address that follows the instruction.)   call @rr0     sp = 0000h (0000h  =  1ah, 0001h  =  49h)   call #40h     sp  =  0000h (0000h  =  1ah, 0001h  =  49h)  in the first example, if the program counter value is 1a47h and the stack pointer contains the  value 0002h, the statement "call  3521h" pushes the current pc value onto the top of the stack.  the stack pointer now points to the memory location 0000h. the pc is then loaded with the value  3521h, the address of the first instruction in the program sequence to be executed.  if the contents of the program counter and the stack pointer are the same as in the first example,  the statement "call  @rr0" produces the same result except that the 49h is stored in stack  location 0001h (because the two-byte instruction format was used). the pc is then loaded with  the value 3521h, the address of the first instruction in the program sequence to be executed.  assuming that the contents of the program counter and the stack pointer are the same as in the  first example, if the program address 0040h contains 35h and the program address 0041h  contains 21h, the statement "call #40h" produces the same result as in the second example. 

 s3c84bb/f84bb  instruction set     6-27   ccf  ? complement carry flag  ccf   operation:    c      not  c  the carry flag (c) is complemented. if c  =  "1", the value of the carry flag is changed to logic zero.  if c  =  "0", the value of the carry flag is changed to logic one.   flags:   c:  complemented.  no other flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 ef    example:  given:  the carry flag  =  "0":   ccf  if the carry flag  =  "0", the ccf instruction complements it in the flags register (0d5h),  changing its value from logic zero to logic one. 

 instruction set    s3c84bb/f84bb  6-28     clr   ? clear  clr  dst  operation:    dst      "0"  the destination location is cleared to "0".  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 b0  r          4 b1  ir    examples:   given:  register 00h  =  4fh, register 01h  =  02h, and register 02h  =  5eh:   clr 00h     register 00h  =  00h   clr @01h     register 01h  =  02h, register 02h  =  00h  in register (r) addressing mode, the statement "clr  00h" clears the destination register 00h  value to 00h.   in the second example, the statement "clr  @01h" uses indirect register (ir) addressing mode  to clear the 02h register value to 00h. 

 s3c84bb/f84bb  instruction set     6-29   com  ? complement  com  dst  operation:    dst      not  dst  the contents of the destination location are complemented (one's complement). all "1s" are  changed to "0s", and vice-versa.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always reset to "0".       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 60  r          4 61  ir    examples:  given:  r1  =  07h and register 07h  =  0f1h:   com r1      r1  =  0f8h   com @r1     r1  =  07h, register 07h  =  0eh  in the first example, the destination working register r1 contains the value 07h (00000111b). the  statement "com  r1" complements all the bits in r1: all logic ones are changed to logic zeros,  and logic zeros to logic ones, leaving the value 0f8h (11111000b).  in the second example, indirect register (ir) addressing mode is used to complement the value  of the destination register 07h (11110001b), leaving the new value 0eh (00001110b). 

 instruction set    s3c84bb/f84bb  6-30     cp   ?   compare  cp  dst,src  operation:    dst?src  the source operand is compared to (subtracted from) the destination operand, and the  appropriate flags are set accordingly. the contents of both operands are unaffected by the  comparison.  flags:   c:    set if a "borrow" occurred (src > dst); cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  a2  r  r          6 a3 r lr   opc src dst   3 6 a4 r r          6 a5 r ir   opc dst src   3 6 a6 r im    examples:  1. given:  r1  =  02h and  r2  =  03h:        cp  r1,r2     set the c and s flags  the destination working register r1 contains the value 02h and the source register r2 contains  the value 03h. the statement "cp  r1,r2" subtracts the r2 value (source/subtrahend) from the  r1 value (destination/minuend). because a "borrow" occurs and the difference is negative, the c  and the s flag values are "1".    2. given:  r1 = 05h and r2 = 0ah:        cp  r1,r2        jp  uge,skip        inc  r1        skip  ld  r3,r1          in this example, the destination working register r1 contains the value 05h which is less than the          contents of the source working register r2 (0ah). the statement "cp  r1,r2" generates c = "1"           and the jp instruction does not jump to the skip location. after the statement "ld  r3,r1"           executes, the value 06h remains in the working register r3. 

 s3c84bb/f84bb  instruction set     6-31   cpije  ? compare, increment, and jump on equal  cpije  dst,src,ra  operation:   if dst?src  =  "0", pc      pc  +  ra      ir      ir  +  1  the source operand is compared to (subtracted from) the destination operand. if the result is "0",  the relative address is added to the program counter and control passes to the statement whose  address is now in the program counter. otherwise, the instruction immediately following the cpije  instruction is executed. in either case, the source pointer is incremented by one before the next  instruction is executed.  flags:     no flags are affected.  format:             bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst ra   3 12 c2 r ir    example:  given:  r1  =  02h, r2  =  03h, and register 03h  =  02h:   cpije r1,@r2,skip     r2  =  04h, pc jumps to skip location  in this example, the working register r1 contains the value 02h, the working register r2 the value  03h, and the register 03 contains 02h. the statement "cpije  r1,@r2,skip" compares the @r2  value 02h (00000010b) to 02h (00000010b). because the result of the comparison is  equal , the  relative address is added to the pc and the pc then jumps to the memory location pointed to by  skip. the source register (r2) is incremented by one, leaving a value of 04h.   remember that the memory location addressed by the cpije instruction must be within the  allowed range of  + 127  to  ? 128. 

 instruction set    s3c84bb/f84bb  6-32     cpijne   ? compare, increment, and jump on non-equal  cpijne  dst,src,ra  operation:   if dst?src     "0", pc      pc  +  ra      ir      ir  +  1  the source operand is compared to (subtracted from) the destination operand. if the result is not  "0", the relative address is added to the program counter and control passes to the statement  whose address is now in the program counter. otherwise the instruction following the cpijne  instruction is executed. in either case the source pointer is incremented by one before the next  instruction.  flags:     no flags are affected.  format:             bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst ra   3 12 d2 r ir    example:  given:  r1  =  02h, r2  =  03h, and register 03h  =  04h:   cpijne r1,@r2,skip     r2  =  04h, pc jumps to skip location  the working register r1 contains the value 02h, the working register r2 (the source pointer) the  value 03h, and the general register 03 the value 04h. the statement "cpijne  r1,@r2,skip"  subtracts 04h (00000100b) from 02h (00000010b). because the result of the comparison is  non- equal , the relative address is added to the pc and the pc then jumps to the memory location  pointed to by skip. the source pointer register (r2) is also incremented by one, leaving a value of  04h.   remember that the memory location addressed by the cpijne instruction must be within the  allowed range of  + 127  to  ? 128. 

 s3c84bb/f84bb  instruction set     6-33   da   ? decimal adjust  da  dst  operation:  dst      da  dst  the destination operand is adjusted to form two 4-bit bcd digits following an addition or  subtraction operation. for addition (add, adc) or subtraction (sub, sbc), the following table  indicates the operation performed (the operation is undefined if the destination operand is not the  result of a valid addition or subtraction of bcd digits):  instruction carry  before da  bits 4?7  value (hex) h flag  before da  bits 0?3  value (hex) number added  to byte  carry   after da    0 0?9 0 0?9  00  0   0 0?8 0 a?f 06 0    0 0?9 1 0?3  06  0  add 0 a?f 0 0?9  60  1  adc 0  9?f  0  a?f  66  1    0 a?f 1 0?3  66  1    1 0?2 0 0?9  60  1   1 0?2 0 a?f 66 1    1 0?3 1 0?3  66  1    0  0?9  0  0?9  00  =  ? 00  0  sub  0  0?8  1  6?f  fa  =  ? 06  0  sbc  1  7?f  0  0?9  a0  =  ? 60  1    1  6?f  1  6?f  9a  =  ? 66  1    flags:   c:    set if there was a carry from the most significant bit; cleared otherwise (see table).      z:    set if result is "0"; cleared otherwise.      s:    set if result bit 7 is set; cleared otherwise.      v:    undefined.      d:    unaffected.      h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 40  r          4 41  ir   

 instruction set    s3c84bb/f84bb  6-34     da  ? decimal adjust  da   (continued)  example:   given: the working register r0 contains the value 15 (bcd), the working register r1 contains 27      (bcd), and the address 27h contains 46 (bcd):   add r1,r0 ; c      "0", h     "0", bits 4?7 = 3, bits 0?3 = c, r1       3ch   da  r1  ; r1      3ch + 06          if an addition is performed using the bcd values 15 and 27, the result should be 42. the sum is           incorrect, however, when the binary representations are added in the destination location using       the standard binary arithmetic:    0 0 0 1    0 1 0 1  15    +  0 0 1 0    0 1 1 1  27      0 0 1 1    1 1 0 0  =  3ch      the da instruction adjusts this result so that the correct bcd representation is obtained:    0 0 1 1    1 1 0 0    +  0 0 0 0    0 1 1 0       0 1 0 0    0 0 1 0  =  42      assuming the same values given above, the statements   sub 27h,r0 ; c    "0", h    "0", bits 4?7 = 3, bits 0?3 = 1   da  @r1 ; @r1    31?0      leave the value 31 (bcd) in the address 27h (@r1). 

 s3c84bb/f84bb  instruction set     6-35   dec   ? decrement  dec  dst  operation:    dst       dst?1  the contents of the destination operand are decremented by one.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 00  r          4 01  ir    examples:  given:  r1  =  03h and register 03h  =  10h:   dec r1      r1  =  02h   dec @r1     register 03h  =  0fh  in the first example, if the working register r1 contains the value 03h, the statement "dec  r1"  decrements the hexadecimal value by one, leaving the value 02h. in the second example, the  statement "dec @r1" decrements the value 10h contained in the destination register 03h by  one, leaving the value 0fh. 

 instruction set    s3c84bb/f84bb  6-36     decw   ? decrement word   decw  dst  operation:    dst       dst ? 1  the contents of the destination location (which must be an even address) and the operand   following that location are treated as a single 16-bit value that is decremented by one.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 8 80  rr          8 81  ir    examples:  given:  r0  =  12h, r1  =  34h, r2  =  30h, register 30h  = 0fh, and register 31h  =  21h:   decw rr0     r0 = 12h, r1 = 33h   decw @r2     register 30h  = 0fh, register 31h = 20h  in the first example, the destination register r0 contains the value 12h and the register r1 the  value 34h. the statement "decw  rr0" addresses r0 and the following operand r1 as a 16-bit  word and decrements the value of r1 by one, leaving the value 33h.  note:     a system malfunction may occur if you use a zero flag (flags.6) result together with a decw instruction.           to avoid this problem, it is recommended to use decw as shown in the following example.   loop decw rr0   ld  r2,r1   or  r2,r0   jr  nz,loop   

 s3c84bb/f84bb  instruction set     6-37   di   ? disable interrupts  di   operation:    sym (0)      0  bit zero of the system mode control register, sym.0, is cleared to "0", globally disabling all  interrupt processing. interrupt requests will continue to set their respective interrupt pending bits,  but the cpu will not service them while interrupt processing is disabled.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 8f    example:  given:  sym  =  01h:   di  if the value of the sym register is 01h, the statement "di" leaves the new value 00h in the register  and clears sym.0 to "0", disabling interrupt processing. 

 instruction set    s3c84bb/f84bb  6-38     div   ? divide (unsigned)   div   dst,src  operation:     dst    src      dst  (upper)      remainder      dst  (lower)      quotient  the destination operand (16 bits) is divided by the source operand (8 bits). the quotient (8 bits) is  stored in the lower half of the destination. the remainder (8 bits) is stored in the upper half of the  destination. when the quotient is    2 8 , the numbers stored in the upper and lower halves of the  destination for quotient and remainder are incorrect. both operands are treated as unsigned  integers.  flags:   c:    set if the v flag is set and the quotient is between 2 8  and 2 9  ?1; cleared otherwise.       z:    set if the divisor or the quotient  =  "0"; cleared otherwise.       s:    set if msb of the quotient  =  "1"; cleared otherwise.       v:    set if the quotient is      2 8   or if the divisor  =  "0"; cleared otherwise.       d:    unaffected.    h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst   3 2 6 /10 *  94  rr  r          2 6 /10 *  95  rr  ir          2 6 /10 *  96  rr  im  *  execution takes 10 cycles if the divide-by-zero   is attempted, otherwise, it takes 2 6  cycles.  examples:  given:  r0  =  10h, r1  =  03h, r2  =  40h, register 40h  =  80h:   div rr0,r2      r0  =  03h, r1  =  40h   div rr0,@r2     r0  =  03h, r1  =  20h   div rr0,#20h     r0  =  03h, r1  =  80h  in the first example, the destination working register pair rr0 contains the values 10h (r0) and  03h (r1), and the register r2 contains the value 40h. the statement "div  rr0,r2" divides the  16-bit rr0 value by the 8-bit value of the r2 (source) register. after the div instruction, r0  contains the value 03h and r1 contains 40h. the 8-bit remainder is stored in the upper half of the  destination register rr0 (r0) and the quotient in the lower half (r1). 

 s3c84bb/f84bb  instruction set     6-39   djnz  ? decrement and jump if non-zero  djnz   r,dst  operation:    r      r  ?  1      if  r      0, pc      pc  +  dst  the working register being used as a counter is decremented. if the contents of the register are  not logic zero after decrementing, the relative address is added to the program counter and control  passes to the statement whose address is now in the pc. the range of the relative address is  +  127  to  ? 128, and the original value of the pc is taken to be the address of the instruction byte  following the djnz statement.  note:     in case of using djnz instruction, the working register being used as a counter should be set at               the one of location 0c0h to 0cfh with srp, srp0 or srp1 instruction.   flags:     no flags are affected.  format:       bytes cycles  opcode  (hex)  addr mode  dst     r  |  opc  dst  2  8  (jump taken)  ra  ra          8  (no jump)  r = 0 to f      example:  given:  r1  =  02h and loop is the label of a relative address:   srp #0c0h   djnz r1,loop  djnz is typically used to control a "loop" of instructions. in many cases, a label is used as the  destination operand instead of a numeric relative address value. in the example, the working  register r1 contains the value 02h, and loop is the label for a relative address.   the statement "djnz  r1, loop" decrements the register r1 by one, leaving the value 01h.  because the contents of r1 after the decrement are non-zero, the jump is taken to the relative  address specified by the loop label.   

 instruction set    s3c84bb/f84bb  6-40     ei  ? enable interrupts  ei   operation:     sym (0)       1  the ei instruction sets bit zero of the system mode register, sym.0 to "1". this allows interrupts to  be serviced as they occur (assuming they have the highest priority). if an interrupt's pending bit  was set while interrupt processing was disabled (by executing a di instruction), it will be serviced  when the ei instruction is executed.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 9f    example:  given:  sym  =  00h:   ei  if the sym register contains the value 00h, that is, if interrupts are currently disabled, the  statement "ei" sets the sym register to 01h, enabling all interrupts. (sym.0 is the enable bit for  global interrupt processing.) 

 s3c84bb/f84bb  instruction set     6-41   enter   ? enter  enter   operation:    sp       sp ? 2      @sp       ip       ip       pc      pc       @ip      ip       ip + 2  this instruction is useful when implementing threaded-code languages. the contents of the  instruction pointer are pushed to the stack. the program counter (pc) value is then written to the  instruction pointer. the program memory word that is pointed to by the instruction pointer is loaded  into the pc, and the instruction pointer is incremented by two.  flags:     no flags are affected.  format:         bytes cycles opcode  (hex)    opc     1 14 1f    example:   the diagram below shows an example of how to use an enter statement.   ip data address data 40 41 42 43 address data 1f 01 10 memory stack 0050 before 0022 0040 pc 22 iph ipl data ip address data 40 41 42 43 address data 1f 01 10 memory stack enter address h address l address h 0043 0020 0110 pc enter address h address l address h routine 110 20 21 22 after 00 50      

 instruction set    s3c84bb/f84bb  6-42     exit   ? exit   exit   operation:  ip        @sp   sp        sp  +  2   pc        @ip   ip        ip  +  2  this instruction is useful when implementing threaded-code languages. the stack value is popped  and loaded into the instruction pointer. the program memory word that is pointed to by the  instruction pointer is then loaded into the program counter, and the instruction pointer is  incremented by two.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 16 2f    example:  the diagram below shows an example of how to use an exit statement.   ip data address data 50 51 address data 60 00 memory stack 0050 before 0022 0040 pc 22 iph ipl data ip address data 60 address data memory stack pcl old pch exit 0043 0020 0110 pc main 140 20 21 22 after 00 50      

 s3c84bb/f84bb  instruction set     6-43   idle   ? idle operation   idle    operation:  (see description)  the idle instruction stops the cpu clock while allowing the system clock oscillation to continue.  idle mode can be released by an interrupt request (irq) or an external reset operation.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc     1 4 6f ? ?    example:  the instruction  idle  stops the cpu clock but it does not stop the system clock. 

 instruction set    s3c84bb/f84bb  6-44     inc   ? increment  inc   dst  operation:    dst      dst  +  1    the contents of the destination operand are incremented by one.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:        bytes cycles opcode  (hex)  addr mode  dst     dst  |  opc    1  4  re  r            r  =  0 to f              opc  dst 2 4 20 r       4 21 ir    examples:  given:  r0  =  1bh, register 00h  =  0ch, and register 1bh  =  0fh:   inc r0     r0  =  1ch   inc 00h     register 00h  =  0dh   inc @r0     r0  =  1bh, register 01h  =  10h  in the first example, if the destination working register r0 contains the value 1bh, the statement  "inc  r0" leaves the value 1ch in that same register.   the second example shows the effect an inc instruction has on the register at the location 00h,  assuming that it contains the value 0ch.   in the third example, inc is used in indirect register (ir) addressing mode to increment the value  of the register 1bh from 0fh to 10h. 

 s3c84bb/f84bb  instruction set     6-45   incw  ? increment word   incw   dst  operation:    dst      dst  +  1          the contents of the destination (which must be an even address) and the byte following that             location are treated as a single 16-bit value that is incremented by one.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 8 a0 rr          8 a1  ir    examples:  given:  r0  =  1ah, r1  =  02h, register 02h  =  0fh, and register 03h  =  0ffh:   incw rr0     r0  =  1ah, r1  = 03h   incw @r1     register 02h  =  10h, register 03h  =  00h  in the first example, the working register pair rr0 contains the value 1ah in the register r0 and  02h in the register r1. the statement "incw  rr0" increments the 16-bit destination by one,  leaving the value 03h in the register r1. in the second example, the statement "incw  @r1"  uses indirect register (ir) addressing mode to increment the contents of the general register 03h  from 0ffh to 00h and the register 02h from 0fh to 10h.  note:     a system malfunction may occur if you use a zero (z) flag (flags.6) result together with an           incw instruction. to avoid this problem, it is recommended to use the incw instruction as shown      in the following example:   loop: incw rr0     ld  r2,r1     or  r2,r0     jr  nz,loop   

 instruction set    s3c84bb/f84bb  6-46     iret   ? interrupt return  iret  iret (normal)    iret (fast)  operation:  flags       @sp  pc   ?   ip   sp       sp  +  1  flags      flags'   pc       @sp    fis      0   sp       sp  +  2   sym(0)       1  this instruction is used at the end of an interrupt service routine. it restores the flag register and  the program counter. it also re-enables global interrupts. a "normal iret" is executed only if the  fast interrupt status bit (fis, bit one of the flags register, 0d5h) is cleared (=  "0"). if a fast  interrupt occurred, iret clears the fis bit that was set at the beginning of the service routine.  flags:     all flags are restored to their original settings (that is, the settings before the interrupt occurred).  format:     iret   (normal)      bytes cycles opcode  (hex)   opc    1 12 bf    iret  (fast)      bytes cycles opcode  (hex)   opc    1 6 bf    example:   in the figure below, the instruction pointer is initially loaded with 100h in the main program before           interrupt are enabled. when an interrupt occurs, the program counter and the instruction pointer          are swapped. this causes the pc to jump to the address 100h and the ip to keep the return          address. the last instruction in the service routine is normally a jump to iret at the address                           ffh.          this loads the instruction pointer with 100h "again" and causes the program counter to jump           back to the main program. now, the next interrupt can occur and the ip is still correct at 100h.  iret interrupt service routine jp to ffh 0h ffh 100h ffffh   note :      in the fast interrupt example above, if the last instruction is not a jump to iret, you must pay           attention to the order of the last tow instruction. the iret cannot be immediately proceeded by an          instruction which clears the interrupt status (as with a reset of the ipr register). 

 s3c84bb/f84bb  instruction set     6-47   jp   ? jump  jp     cc,dst   (conditional)  jp     dst (unconditional)  operation:     if  cc  is true, pc      dst  the conditional jump instruction transfers program control to the destination address if the  condition specified by the condition code (cc) is true, otherwise, the instruction following the jp  instruction is executed. the unconditional jp simply replaces the contents of the pc with the  contents of the specified register pair. control then passes to the statement addressed by the pc.  flags:     no flags are affected.  format:  (1)        (2)    bytes cycles opcode  (hex)  addr mode dst     cc  |  opc   dst 3 8 ccd da              cc = 0 to f                 opc dst   2 8 30 irr      notes:           1.  the 3-byte format is used for a conditional jump and the 2-byte format for an unconditional jump.          2.  in the first byte of the 3-byte instruction format (conditional jump), the condition code and the            opcode are both four bits.  examples:  given:  the carry flag (c) = "1", register 00  =  01h, and register 01  =  20h   jp c,label_w     label_w  =  1000h, pc  =  1000h   jp @00h       pc  =  0120h  the first example shows a conditional jp. assuming that the carry flag is set to "1", the statement  "jp  c,label_w" replaces the contents of the pc with the value 1000h and transfers control to  that location. had the carry flag not been set, control would then have passed to the statement  immediately following the jp instruction.  the second example shows an unconditional jp. the statement "jp  @00" replaces the contents  of the pc with the contents of the register pair 00h and 01h, leaving the value 0120h. 

 instruction set    s3c84bb/f84bb  6-48     jr   ? jump relative  jr     cc,dst  operation:    if  cc  is true, pc      pc  +  dst  if the condition specified by  the condition code (cc) is true, the relative address is added to the  program counter and control passes to the statement whose address is now in the program  counter, otherwise, the instruction following the jr instruction is executed. (see the list of  condition codes at the beginning of this chapter).   the range of the relative address is  +127, ?128, and the original value of the program counter is  taken to be the address of the first instruction byte following the jr statement.  flags:     no flags are affected.  format:       (note)       bytes cycles opcode  (hex)  addr mode  dst    cc  |  opc   dst   2 6 ccb ra              cc = 0 to f         note:  in the first byte of the two-byte instruction format, the condition code and the opcode are each four         bits in length.  example:  given:  the carry flag = "1" and label_x  =  1ff7h:   jr c,label_x      pc  =  1ff7h  if the carry flag is set (that is, if the condition code is ?true?), the statement "jr  c,label_x" will  pass control to the statement whose address is currently in the program counter. otherwise, the  program instruction following the jr will be executed. 

 s3c84bb/f84bb  instruction set     6-49   ld  ? load  ld     dst,src  operation:    dst      src  the contents of the source are loaded into the destination. the source's contents are unaffected.  flags:     no flags are affected.  format:        bytes cycles opcode  (hex)  addr mode  dst        src     dst  |  opc  src    2  4  rc  r  im        4 r8 r r               src  |  opc  dst    2  4  r9  r  r              r = 0 to f                   opc  dst  |  src    2  4  c7  r  lr        4 d7 ir r              opc src dst  3 6 e4 r r        6 e5 r ir              opc dst src  3 6 e6 r im        6 d6 ir im              opc src dst  3 6 f5 ir r               opc  dst  |  src  x  3  6  87  r  x [r]               opc  src  |  dst  x  3  6  97  x [r]  r   

 instruction set    s3c84bb/f84bb  6-50     ld   ? load  ld     (continued)  examples:   given: r0  =  01h, r1  =  0ah, register 00h  =  01h, register 01h  =  20h,          register 02h  =  02h, loop  =  30h, and register 3ah  =  0ffh:   ld r0,#10h      r0  =  10h   ld r0,01h       r0  =  20h, register 01h  =  20h   ld 01h,r0       register 01h  =  01h, r0  =  01h   ld r1,@r0      r1  =  20h, r0  =  01h   ld @r0,r1      r0  =  01h, r1  =  0ah, register 01h  =  0ah   ld 00h,01h      register 00h  =  20h, register 01h  =  20h   ld 02h,@00h      register 02h  =  20h, register 00h  =  01h   ld 00h,#0ah      register 00h  =  0ah   ld @00h,#10h     register 00h  =  01h, register 01h  =  10h   ld @00h,02h      register 00h  =  01h, register 01h  =  02,                      register 02h  = 02h   ld r0,#loop[r1]     r0  =  0ffh, r1  =  0ah   ld #loop[r0],r1     register 31h  =  0ah, r0  =  01h, r1  =  0ah 

 s3c84bb/f84bb  instruction set     6-51   ldb  ? load bit  ldb     dst,src.b  ldb     dst.b,src  operation:  dst(0)      src(b)    or   dst(b)      src(0)  the specified bit of the source is loaded into bit zero (lsb) of the destination, or bit zero of the  source is loaded into the specified bit of the destination. no other bits of the destination are  affected. the source is unaffected.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc  dst | b | 0   src   3  6  47 r0 rb                 opc  src | b | 1   dst   3  6  47 rb r0      note:   in the second byte of the instruction format, the destination (or the source) address is four bits,               the bit address "b" is three bits, and the lsb address value is one bit in length.  examples:  given:  r0  =  06h and general register 00h  =  05h:   ldb r0,00h.2     r0  =  07h, register 00h  =  05h  ldb 00h.0,r0     r0  =  06h, register 00h  =  04h  in the first example, the destination working register r0 contains the value 06h and the source  general register 00h the value 05h. the statement "ld  r0,00h.2" loads the bit two value of the  00h register into bit zero of the r0 register, leaving the value 07h in the register r0.   in the second example, 00h is the destination register. the statement "ld  00h.0,r0" loads bit  zero of the register r0 to the specified bit (bit zero) of the destination register, leaving 04h in the  general register 00h. 

 instruction set    s3c84bb/f84bb  6-52     ldc/lde   ? load memory   ldc  dst,src   lde  dst,src  operation:    dst      src  this instruction loads a byte from program or data memory into a working register or vice-versa.  the source values are unaffected. ldc refers to program memory and lde to data memory. the  assembler makes "irr" or "rr" values an even number for program memory and an odd number for  data memory.  flags:     no flags are affected.  format:           bytes cycles opcode  (hex)  addr mode  dst        src   1.   opc  dst  |  src      2 10  c3 r irr  2. opc  src  |  dst     2 10  d3 irr r  3. opc  dst  |  src  xs   3 12  e7 r xs [rr]  4. opc  src  |  dst  xs   3 12  f7 xs [rr] r  5. opc  dst  |  src  xl l  xl h   4 14  a7 r xl [rr] 6. opc  src  |  dst  xl l  xl h   4 14  b7 xl [rr] r  7. opc  dst | 0000  da l  da h   4 14  a7 r da  8. opc  src | 0000  da l  da h   4 14  b7 da r  9. opc  dst | 0001  da l  da h   4 14  a7 r da  10. opc  src | 0001  da l  da h   4 14  b7 da r  notes:   1.  the source (src) or the working register pair [rr] for formats 5 and 6 cannot use the register pair 0?1.  2.  for the formats 3 and 4, the destination "xs [rr]" and the source address "xs [rr]" are both one byte.  3.  for the formats 5 and 6, the destination "xl [rr] and the source address "xl [rr]" are both two bytes.  4.  the da and the r source values for the formats 7 and 8 are used to address program memory. the second set of    values, used in the formats 9 and 10, are used to address data memory.  5.  lde instruction can be used to read/write the data of 64-kbyte data memory. 

 s3c84bb/f84bb  instruction set     6-53   ldc/lde   ? load memory  ldc/lde   (continued)  examples:  given: r0  =  11h, r1  =  34h, r2  =  01h, r3  =  04h; program memory locations     0103h  =  4fh, 0104h  =  1a, 0105h  =  6dh, and 1104h  =  88h.                 external data memory locations        0103h  =  5fh, 0104h  =  2ah, 0105h  =  7dh, and 1104h  =  98h:   ldc r0,@rr2  ; r0      contents of program memory location 0104h;              ;  r0  =  1ah, r2  =  01h, r3  =  04h   lde r0,@rr2  ; r0      contents of external data memory location                0104h;              ;  r0  =  2ah, r2  =  01h, r3  =  04h    ldc  @rr2,r0    ;  11h (contents of r0) is loaded into program memory              ;  location 0104h (rr2); r0, r2, r3      no change    lde  @rr2,r0    ;  11h (contents of r0) is loaded into external data                memory               ;  location 0104h (rr2); r0, r2, r3      no change   ldc r0,#01h[rr2]  ; r0      contents of program memory location 0105h               ;  (01h + rr2); r0  =  6dh, r2  =  01h, r3  =  04h   lde r0,#01h[rr2]  ; r0      contents of external data memory location                0105h               ;  (01h + rr2); r0  =  7dh, r2  =  01h, r3  =  04h    ldc  #01h[rr2],r0   ;  11h (contents of r0) is loaded into program memory              location               ;  0105h (01h + 0104h)    lde  #01h[rr2],r0   ;  11h (contents of r0) is loaded into external data                memory               ;  location 0105h (01h + 0104h)   ldc r0,#1000h[rr2] ; r0      contents of program memory location 1104h               ;  (1000h + 0104h); r0  =  88h, r2  =  01h, r3  =  04h   lde r0,#1000h[rr2] ; r0      contents of external data memory location                1104h               ;  (1000h + 0104h); r0  =  98h, r2  =  01h, r3  =  04h   ldc r0,1104h  ; r0      contents of program memory location 1104h              ;  r0  =  88h   lde r0,1104h  ; r0      contents of external data memory location                1104h;               ;  r0  =  98h      ldc  1105h,r0    ;  11h (contents of r0) is loaded into program memory              location            ; 1105h; (1105h)      11h    lde  1105h,r0    ;  11h (contents of r0) is loaded into external data                memory               ;  location 1105h; (1105h)      11h  note:      the ldc and the lde instructions are not supported by masked rom type devices. 

 instruction set    s3c84bb/f84bb  6-54     ldcd/lded   ? load memory and decrement  ldcd     dst,src   lded   dst,src  operation:    dst      src    rr      rr ? 1  these instructions are used for user stacks or block transfers of data from program or data  memory to the register file. the address of the memory location is specified by a working register  pair. the contents of the source location are loaded into the destination location. the memory  address is then decremented. the contents of the source are unaffected.      ldcd refers to program memory and lded refers to external data memory. the assembler    makes "irr" an even number for program memory and an odd number for data memory.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  10  e2  r  irr    examples:  given:  r6  =  10h, r7  =  33h, r8  =  12h, program memory location 1033h  =  0cdh, and     external data memory location 1033h  =  0ddh:    ldcd  r8,@rr6    ;  0cdh (contents of program memory location 1033h) is              loaded               ;  into r8 and rr6 is decremented by one;              ;  r8  =  0cdh, r6  =  10h, r7 = 32h (rr6      rr6 ? 1)    lded  r8,@rr6    ;  0ddh (contents of data memory location 1033h) is                loaded               ;  into r8 and rr6 is decremented by one              (rr6      rr6 ? 1);              ;  r8  =  0ddh, r6  =  10h, r7  =  32h  note:      lded instruction can be used to read/write the data of 64-kbyte data memory. 

 s3c84bb/f84bb  instruction set     6-55   ldci/ldei   ? load memory and increment   ldci     dst,src   ldei   dst,src  operation:  dst      src   rr      rr  +  1  these instructions are used for user stacks or block transfers of data from program or data  memory to the register file. the address of the memory location is specified by a working register  pair. the contents of the source location are loaded into the destination location. the memory  address is then incremented automatically. the contents of the source are unaffected.  ldci refers to program memory and ldei refers to external data memory. the assembler makes  "irr" an even number for program memory and an odd number for data memory.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  10  e3  r  irr    examples:  given:  r6  =  10h, r7  =  33h, r8  =  12h, program memory locations 1033h  =  0cdh and     1034h  =  0c5h; external data memory locations 1033h  =  0ddh and 1034h  =  0d5h:    ldci  r8,@rr6    ;  0cdh (contents of program memory location 1033h) is              loaded               ;  into r8 and rr6 is incremented by one              (rr6      rr6 + 1);              ;  r8  =  0cdh, r6  =  10h, r7  =  34h    ldei  r8,@rr6    ;  0ddh (contents of data memory location 1033h) is                loaded               ;  into r8 and rr6 is incremented by one              (rr6       rr6 + 1);              ;  r8  =  0ddh, r6  =  10h, r7  =  34h  note:      ldei instruction can be used to read/write the data of 64-kbyte data memory.  `

 instruction set    s3c84bb/f84bb  6-56     ldcpd/ldepd  ? load memory with pre-decrement  ldcpd     dst,src   ldepd   dst,src  operation:  rr      rr  ?  1   dst      src  these instructions are used for block transfers of data from program or data memory to the  register file. the address of the memory location is specified by a working register pair and is first  decremented. the contents of the source location are then loaded into the destination location.  the contents of the source are unaffected.  ldcpd refers to program memory and ldepd refers to external data memory. the assembler  makes "irr" an even number for program memory and an odd number for external data memory.   flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  src | dst      2  14  f2  irr  r    examples:  given:  r0  =  77h, r6  =  30h, and r7  =  00h:   ldcpd @rr6,r0  ; (rr6      rr6 ? 1)              ;  77h (the contents of r0) is loaded into program memory               ;  location 2fffh (3000h ? 1h);              ;  r0  =  77h, r6  =  2fh, r7  =  0ffh   ldepd @rr6,r0  ; (rr6      rr6 ? 1)              ;  77h (the contents of r0) is loaded into external data              memory               ;  location 2fffh (3000h ? 1h);  note:       ldepd instruction can be used to read/write the data of 64-kbyte data memory. 

 s3c84bb/f84bb  instruction set     6-57   ldcpi/ldepi   ? load memory with pre-increment  ldcpi    dst,src  ldepi   dst,src  operation:    rr      rr  +  1    dst      src  these instructions are used for block transfers of data from program or data memory to the  register file. the address of the memory location is specified by a working register pair and is first  incremented. the contents of the source location are loaded into the destination location. the  contents of the source are unaffected.  ldcpi refers to program memory and ldepi refers to external data memory. the assembler  makes "irr" an even number for program memory and an odd number for data memory.   flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  src | dst      2  14  f3  irr  r    examples:  given:  r0  =  7fh, r6  =  21h, and r7  =  0ffh:   ldcpi @rr6,r0  ; (rr6      brr6 + 1)              ;  7fh (the contents of r0) is loaded into program memory              ;  location 2200h (21ffh + 1h);              ;  r0  =  7fh, r6  =  22h, r7  =  00h   ldepi @rr6,r0  ; (rr6      brr6 + 1)              ;  7fh (the contents of r0) is loaded into external data              memory              ;  location 2200h (21ffh + 1h);              ;  r0  =  7fh, r6  =  22h, r7  =  00h  note:       ldepi instruction can be used to read/write the data of 64-kbyte data memory. 

 instruction set    s3c84bb/f84bb  6-58     ldw  ? load word   ldw     dst,src  operation:    dst      src  the contents of the source (a word) are loaded into the destination. the contents of the source     are unaffected.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst   3 8 c4 rr rr          8 c5 rr ir                 opc dst  src  4 8 c6 rr iml    examples:   given:  r4 = 06h, r5 = 1ch, r6 = 05h, r7 = 02h, register 00h = 1ah, register 01h = 02h,                           register 02h = 03h,and register 03h = 0fh     ldw rr6,rr4     r6  =  06h, r7  =  1ch, r4  =  06h, r5  =  1ch   ldw 00h,02h     register 00h  =  03h, register 01h  =  0fh,              register 02h  =  03h, register 03h  =  0fh   ldw rr2,@r7     r2  =  03h, r3  =  0fh,   ldw 04h,@01h     register 04h  =  03h, register 05h  =  0fh   ldw rr6,#1234h     r6  =  12h, r7  =  34h   ldw 02h,#0fedh     register 02h  =  0fh, register 03h  =  0edh  in the second example, please note that the statement "ldw  00h,02h" loads the contents of the  source word 02h and 03h into the destination word 00h and 01h. this leaves the value 03h in  the general register 00h and the value 0fh in the register 01h.   other examples show how to use the ldw instruction with various addressing modes and  formats. 

 s3c84bb/f84bb  instruction set     6-59   mult   ? multiply (unsigned)  mult     dst,src  operation:    dst      dst      src  the 8-bit destination operand (the even numbered register of the register pair) is multiplied by the  source operand (8 bits) and the product (16 bits) is stored in the register pair specified by the  destination address. both operands are treated as unsigned integers.  flags:   c:   set if the result is   >  255; cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if msb of the result is a "1"; cleared otherwise.       v:    cleared.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst   3 22 84 rr r          22 85 rr ir          22 86 rr im    examples:  given:  register 00h  =  20h, register 01h  =  03h, register 02h  =  09h, register 03h  =  06h:   mult 00h, 02h     register 00h  =  01h, register 01h  =  20h,               register 02h  =  09h   mult 00h, @01h     register 00h  =  00h, register 01h  =  0c0h   mult 00h, #30h     register 00h  =  06h, register 01h =  00h  in the first example, the statement "mult  00h,02h" multiplies the 8-bit destination operand (in  the register 00h of the register pair 00h, 01h) by the source register 02h operand (09h).   the 16-bit product, 0120h, is stored in the register pair 00h, 01h. 

 instruction set    s3c84bb/f84bb  6-60     next   ? next  next   operation:  pc      @ip   ip      ip  +  2  the next instruction is useful when implementing threaded-code languages. the program  memory word that is pointed to by the instruction pointer is loaded into the program counter. the  instruction pointer is then incremented by two.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 10 0f    example:   the following diagram shows an example of how to use the next instruction.      	
 	 
      
 

 
      
  
  
      
 

 
      
     

 s3c84bb/f84bb  instruction set     6-61   nop  ? no operation  nop   operation:    no action is performed when the cpu executes this instruction. typically, one or more nops are                            executed in sequence in order to affect a timing delay of variable duration.    flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 ff    example:     when the instruction nop is executed in a program, no operation occurs. instead, there happens                            a delay in instruction execution time which is of approximately one machine cycle per each  nop                           instruction encountered. 

 instruction set    s3c84bb/f84bb  6-62     or   ? logical or  or     dst,src  operation:    dst      dst  or  src  the source operand is logically ored with the destination operand and the result is stored in the  destination. the contents of the source are unaffected. the or operation results in a "1" being  stored whenever either of the corresponding bits in the two operands is a "1", otherwise, a "0" is  stored.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always cleared to "0".       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  42  r  r          6 43 r lr   opc src dst   3 6 44 r r          6 45 r ir   opc dst src   3 6 46 r im    examples:  given:  r0  =  15h, r1  =  2ah, r2  =  01h, register 00h  =  08h, register 01h  =  37h,                            and register 08h = 8ah   or  r0,r1     r0  =  3fh, r1  =  2ah   or  r0,@r2     r0  =  37h, r2  =  01h, register 01h  =  37h   or  00h,01h     register 00h  =  3fh, register 01h  =  37h   or  01h,@00h     register 00h  =  08h, register 01h  =  0bfh   or  00h,#02h     register 00h  =  0ah  in the first example, if the working register r0 contains the value 15h and the register r1 the  value 2ah, the statement "or  r0,r1" logical-ors the r0 and r1 register contents and stores  the result (3fh) in the destination register r0.   other examples show the use of the logical or instruction with various addressing modes and  formats. 

 s3c84bb/f84bb  instruction set     6-63   pop  ? pop from stack  pop     dst  operation:  dst      @sp   sp      sp  +  1  the contents of the location addressed by the stack pointer are loaded into the destination.   the stack pointer is then incremented by one.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 8 50  r          8 51  ir    examples:  given:  register 00h  =  01h, register 01h  =  1bh, sph (0d8h)  =  00h, spl (0d9h)  =  0fbh,     and stack register 0fbh = 55h:       pop 00h     register 00h  =  55h, sp  =  00fch   pop @00h     register 00h  =  01h, register 01h  =  55h, sp  =  00fch  in the first example, the general register 00h contains the value 01h. the statement "pop  00h"  loads the contents of the location 00fbh (55h) into the destination register 00h and then  increments the stack pointer by one. the register 00h then contains the value 55h and the sp  points to the location 00fch. 

 instruction set    s3c84bb/f84bb  6-64     popud  ? pop user stack (decrementing)  popud     dst,src  operation:    dst      src      ir      ir ? 1  this instruction is used for user-defined stacks in the register file. the contents of the register file  location addressed by the user stack pointer are loaded into the destination. the user stack  pointer is then decremented.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst   3 8 92 r ir    example:  given:  register 00h  =  42h (user stack pointer register), register 42h  =  6fh, and                            register 02h  =  70h:   popud 02h,@00h     register 00h  =  41h, register 02h  =  6fh, register 42h  =             6fh  if the general register 00h contains the value 42h and the register 42h the value 6fh, the  statement "popud  02h,@00h" loads the contents of the register 42h into the destination  register. the user stack pointer is then decremented by one, leaving the value 41h. 

 s3c84bb/f84bb  instruction set     6-65   popui  ?  pop user stack (incrementing)  popui     dst,src  operation:    dst      src      ir      ir + 1  the popui instruction is used for user-defined stacks in the register file. the contents of the  register file location addressed by the user stack pointer are loaded into the destination. the user  stack pointer is then incremented.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc src dst   3 8 93 r ir    example:  given:  register 00h  =  01h and register 01h  =  70h:   popui 02h,@00h     register 00h  =  02h, register 01h  =  70h, register 02h  =             70h  if the general register 00h contains the value 01h and the register 01h the value 70h, the  statement "popui  02h,@00h" loads the value 70h into the destination general register 02h. the  user stack pointer (the register 00h) is then incremented by one, changing its value from 01h to  02h. 

 instruction set    s3c84bb/f84bb  6-66     push   ? push to stack  push     src  operation:    sp      sp  ?  1    @sp       src  a push instruction decrements the stack pointer value and loads the contents of the source (src)  into the location addressed by the decremented stack pointer. the operation then adds the new  value to the top of the stack.  flags:     no flags are affected.  format:         bytes cycles opcode  (hex)  addr mode  dst     opc  src    2  8 (internal clock)  70  r            8 (external clock)                           8 (internal clock)                8 (external clock)  71  ir    examples:  given:  register 40h  =  4fh, register 4fh  =  0aah, sph  =  00h, and spl  =  00h:   push 40h     register 40h  =  4fh, stack register 0ffh  =  4fh,              sph  =  0ffh, spl  =  0ffh   push @40h     register 40h  =  4fh, register 4fh  =  0aah, stack register              0ffh  =  0aah, sph  =  0ffh, spl  =  0ffh  in the first example, if the stack pointer contains the value 0000h, and the general register 40h  the value 4fh, the statement "push  40h" decrements the stack pointer from 0000 to 0ffffh. it  then loads the contents of the register 40h into the location 0ffffh and adds this new value to  the top of the stack. 

 s3c84bb/f84bb  instruction set     6-67   pushud   ? push user stack (decrementing)  pushud  dst,src  operation:  ir     ir  ? 1   dst     src  this instruction is used to address user-defined stacks in the register file. pushud decrements  the user stack pointer and loads the contents of the source into the register addressed by the  decremented stack pointer.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc dst src   3 8 82 ir r    example:  given:  register 00h  =  03h, register 01h  =  05h, and register 02h  =  1ah:   pushud @00h,01h     register 00h  =  02h, register 01h  =  05h,               register 02h  =  05h  if the user stack pointer (the register 00h, for example) contains the value 03h, the statement  "pushud @00h,01h" decrements the user stack pointer by one, leaving the value 02h.   the 01h register value, 05h, is then loaded into the register addressed by the decremented user  stack pointer. 

 instruction set    s3c84bb/f84bb  6-68     pushui  ? push user stack (incrementing)  pushui   dst,src  operation:  ir      ir  +  1   dst      src  this instruction is used for user-defined stacks in the register file. pushui increments the user  stack pointer and then loads the contents of the source into the register location addressed by the  incremented user stack pointer.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src    opc dst src   3 8 83 ir r    example:  given:  register 00h  =  03h, register 01h  =  05h, and register 04h  =  2ah:   pushui @00h,01h     register 00h  =  04h, register 01h  =  05h,               register 04h  =  05h  if the user stack pointer (the register 00h, for example) contains the value 03h, the statement  "pushui @00h,01h" increments the user stack pointer by one, leaving the value 04h. the 01h  register value, 05h, is then loaded into the location addressed by the incremented user stack  pointer. 

 s3c84bb/f84bb  instruction set     6-69   rcf   ? reset carry flag  rcf  rcf  operation:    c      0    the carry flag is cleared to logic zero, regardless of its previous value.  flags: c:  cleared to "0".      no other flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 cf    example:  given:  c = "1"  or  "0":          the instruction rcf clears the carry flag (c) to logic zero. 

 instruction set    s3c84bb/f84bb  6-70     ret   ? return  ret   operation:  pc      @sp   sp      sp  +  2  the ret instruction is normally used to return to the previously executed procedure at the end of  the procedure entered by a call instruction. the contents of the location addressed by the stack  pointer are popped into the program counter. the next statement to be executed is the one that is  addressed by the new program counter value.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 10 af    example:  given:  sp  =  00fch, (sp)  =  101ah, and pc  =  1234:  ret     pc  =  101ah, sp  =  00feh  the ret instruction pops the contents of the stack pointer location 00fch (10h) into the high  byte of the program counter. the stack pointer then pops the value in the location 00feh (1ah)  into the pc's low byte and the instruction at the location 101ah is executed. the stack pointer now  points to the memory location 00feh. 

 s3c84bb/f84bb  instruction set     6-71   rl   ? rotate left  rl     dst  operation:  c      dst (7)    dst (0)      dst (7)    dst (n  +  1)      dst (n),  n  =  0?6  the contents of the destination operand are rotated left one bit position. the initial value of bit 7 is  moved to the bit zero (lsb) position and also replaces the carry flag, as shown in the figure below.   70 c   flags:   c:    set if the bit rotated from the most significant bit position (bit 7) was "1".       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    set if arithmetic overflow occurred; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 90  r          4 91  ir    examples:  given:  register 00h  =  0aah, register 01h  =  02h and register 02h  =  17h:   rl  00h     register 00h  =  55h, c  =  "1"   rl  @01h     register 01h  =  02h, register 02h  =  2eh, c  =  "0"  in the first example, if the general register 00h contains the value 0aah (10101010b), the  statement "rl  00h" rotates the 0aah value left one bit position, leaving the new value 55h  (01010101b) and setting the carry (c) and the overflow (v) flags. 

 instruction set    s3c84bb/f84bb  6-72     rlc   ? rotate left through carry  rlc     dst  operation:   dst (0)      c   c      dst (7)    dst (n  +  1)      dst (n), n  =  0?6  the contents of the destination operand with the carry flag are rotated left one bit position. the  initial value of bit 7 replaces the carry flag (c), and the initial value of the carry flag replaces bit  zero.  70 c   flags:   c:    set if the bit rotated from the most significant bit position (bit 7) was "1".       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if the sign of the destination is changed during                  the rotation; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 10  r          4 11  ir    examples:  given:  register 00h  =  0aah, register 01h  =  02h, and register 02h  =  17h, c  =  "0":   rlc 00h     register 00h  =  54h, c  =  "1"   rlc @01h     register 01h  =  02h, register 02h  =  2eh, c  = "0"  in the first example, if the general register 00h has the value 0aah (10101010b), the statement  "rlc  00h" rotates 0aah one bit position to the left. the initial value of bit 7 sets the carry flag and  the initial value of the c flag replaces bit zero of the register 00h, leaving the value 55h  (01010101b). the msb of the register 00h resets the carry flag to "1" and sets the overflow flag. 

 s3c84bb/f84bb  instruction set     6-73   rr   ? rotate right  rr     dst  operation:  c      dst (0)    dst (7)      dst (0)    dst (n)      dst (n  +  1), n  =  0?6  the contents of the destination operand are rotated right one bit position. the initial value of bit  zero (lsb) is moved to bit 7 (msb) and also replaces the carry flag (c).  70 c   flags:   c:    set if the bit rotated from the least significant bit position (bit zero) was "1".       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if the sign of the destination is changed during                         the rotation; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 e0  r          4 e1  ir    examples:  given:  register 00h  =  31h, register 01h  =  02h, and register 02h  =  17h:   rr  00h     register 00h =  98h, c  =  "1"   rr  @01h     register 01h  =  02h, register 02h  =  8bh, c  =  "1"  in the first example, if the general register 00h contains the value 31h (00110001b), the  statement "rr 00h" rotates this value one bit position to the right. the initial value of bit zero is  moved to bit 7, leaving the new value 98h (10011000b) in the destination register. the initial bit  zero also resets the c flag to "1" and the sign flag and the overflow flag are also set to "1". 

 instruction set    s3c84bb/f84bb  6-74     rrc   ? rotate right through carry  rrc   dst  operation:   dst (7)      c   c      dst (0)    dst (n)      dst (n  +  1), n  =  0?6  the contents of the destination operand and the carry flag are rotated right one bit position. the  initial value of bit zero (lsb) replaces the carry flag, and the initial value of the carry flag replaces   bit 7 (msb).    70 c   flags:   c:    set if the bit rotated from the least significant bit position (bit zero) was "1".       z:    set if the result is "0" cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if the sign of the destination is changed during               the rotation; cleared otherwise.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 c0  r          4 c1  ir    examples:  given:  register 00h  =  55h, register 01h  =  02h, register 02h  =  17h, and c  =  "0":   rrc 00h     register 00h  =  2ah, c  =  "1"   rrc @01h     register 01h  =  02h, register 02h  =  0bh, c  =  "1"  in the first example, if the general register 00h contains the value 55h (01010101b), the  statement "rrc  00h" rotates this value one bit position to the right. the initial value of bit zero  ("1") replaces the carry flag and the initial value of the c flag ("1") replaces bit 7. this  leaves the  new value 2ah (00101010b) in the destination register 00h. the sign flag and the overflow flag  are both cleared to "0". 

 s3c84bb/f84bb  instruction set     6-75   sb0   ? select bank 0  sb0   operation:    bank      0  the sb0 instruction clears the bank address flag in the flags register (flags.0) to logic zero,  selecting the bank 0 register addressing in the set 1 area of the register file.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 4f    example:    the statement  sb0  clears flags.0 to "0", selecting the bank 0 register addressing. 

 instruction set    s3c84bb/f84bb  6-76     sb1  ? select bank 1  sb1   operation:    bank      1  the sb1 instruction sets the bank address flag in the flags register (flags.0) to logic one,  selecting the bank 1 register addressing in the set 1 area of the register file.       note:  bank 1 is not implemented in some ks88-series microcontrollers.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 5f    example:    the statement  sb1  sets flags.0 to ?1?, selecting the bank 1 register addressing          (if bank 1 is implemented in the microcontroller?s internla register file). 

 s3c84bb/f84bb  instruction set     6-77   sbc   ? subtract with carry  sbc     dst,src  operation:    dst      dst  ?  src  ?  c  the source operand, along with the current value of the carry flag, is subtracted from the  destination operand and the result is stored in the destination. the contents of the source are  unaffected.  subtraction is performed by adding the two's-complement of the source operand to  the destination operand. in multiple precision arithmetic, this instruction permits the carry  ("borrow") from the subtraction of the low-order operands to be subtracted from the subtraction of  high-order operands.  flags:   c:    set if a borrow occurred (src   >   dst); cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if the operands were of opposite sign and the                  sign of the result is the same as the sign of the source; cleared otherwise.       d:    always set to "1".       h:    cleared if there is a carry from the most significant bit of the low-order four bits of the result;                             set otherwise, indicating a ?borrow?                 format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  32  r  r          6 33 r lr   opc src dst   3 6 34 r r          6 35 r ir   opc dst src   3 6 36 r im    examples:  given:  r1 = 10h, r2 = 03h, c = "1", register 01h = 20h, register 02h = 03h,                            and register 03h = 0ah:   sbc r1,r2     r1  =  0ch, r2  =  03h   sbc r1,@r2     r1  =  05h, r2  =  03h, register 03h  =  0ah   sbc 01h,02h     register 01h  =  1ch, register 02h  =  03h   sbc 01h,@02h     register 01h  =  15h, register 02h  =  03h,               register 03h  =  0ah   sbc 01h,#8ah     register 01h  =  95h; c, s, and v  =  "1"  in the first example, if the working register r1 contains the value 10h and the register r2 the  value 03h, the statement "sbc  r1,r2" subtracts the source value (03h) and the c flag value  ("1") from the destination (10h) and then stores the result (0ch) in the register r1. 

 instruction set    s3c84bb/f84bb  6-78     scf  ? set carry flag  scf   operation:   c      1          the carry flag (c) is set to logic one, regardless of its previous value.  flags: c:   set to "1".      no other flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4 df    example:   the statement  scf  sets the carry flag to ?1?. 

 s3c84bb/f84bb  instruction set     6-79   sra   ? shift right arithmetic  sra     dst  operation:   dst (7)      dst (7)   c      dst (0)    dst (n)      dst (n  +  1), n  =  0?6  an arithmetic shift-right of one bit position is performed on the destination operand. bit zero (the  lsb) replaces the carry flag. the value of bit 7 (the sign bit) is unchanged and is shifted into the  bit position 6.    70 c 6   flags:   c:    set if the bit shifted from the lsb position (bit zero) was "1".       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    always cleared to "0".       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 d0  r          4 d1  ir    examples:  given:  register 00h  =  9ah, register 02h  =  03h, register 03h  =  0bch, and c  =  "1":   sra 00h     register 00h  =  0cd, c  =  "0"   sra @02h     register 02h  =  03h, register 03h  =  0deh, c  =  "0"  in the first example, if the general register 00h contains the value 9ah (10011010b), the  statement "sra  00h" shifts the bit values in the register 00h right one bit position. bit zero ("0")  clears the c flag and bit 7 ("1") is then shifted into the bit 6 position (bit 7 remains unchanged).  this leaves the value 0cdh (11001101b) in the destination register 00h. 

 instruction set    s3c84bb/f84bb  6-80     srp/srp0/srp1   ? set register pointer   srp    src  srp0  src   srp1  src  operation:   if src (1)  =  1 and src (0)  =  0 then:  rp0 (3?7)       src (3?7)    if src (1)  =  0 and src (0)  =  1 then:  rp1 (3?7)       src (3?7)    if src (1)  =  0 and src (0)  =  0 then:  rp0 (4?7)       src (4?7),            rp0 (3)       0            rp1 (4?7)       src (4?7),            rp1 (3)       1  the source data bits one and zero (lsb) determine whether to write one or both of the register  pointers, rp0 and rp1. bits 3?7 of the selected register pointer are written unless both register  pointers are selected. rp0.3 is then cleared to logic zero and rp1.3 is set to logic one.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  src    opc src    2 4 31  im    examples:   the statement  srp #40h  sets the register pointer 0 (rp0) at the location 0d6h to 40h and the                             register pointer 1 (rp1) at the location 0d7h to 48 h.  the statement "srp0  #50h" would set rp0 to 50h, and the statement "srp1  #68h" would set  rp1 to 68h.  note:       before execute the stop instruction, you must set the stpcon register as ?10100101b?.          otherwise the stop instruction will not execute.

 s3c84bb/f84bb  instruction set     6-81   stop   ? stop operation   stop   operation:  the stop instruction stops the both the cpu clock and system clock and causes the  microcontroller to enter stop mode. during stop mode, the contents of on-chip cpu registers,  peripheral registers, and i/o port control and data registers are retained. stop mode can be  released by an external reset operation or by external interrupts. for the reset operation, the  reset pin must be held to low level until the required oscillation stabilization interval has  elapsed.   flags:     no flags are affected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc     1 4 7f ? ?    example:   the statement  stop  halts all microcontroller operations. 

 instruction set    s3c84bb/f84bb  6-82     sub  ? subtract  sub     dst,src  operation:    dst      dst  ? src  the source operand is subtracted from the destination operand and the result is stored in the  destination. the contents of the source are unaffected. subtraction is performed by adding the  two's complement of the source operand to the destination operand.  flags:   c:    set if a "borrow" occurred; cleared otherwise.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result is negative; cleared otherwise.       v:    set if arithmetic overflow occurred, that is, if the operands were of opposite signs and the                 sign of the result is of the same as the sign of the source operand; cleared otherwise.       d:    always set to "1".  h:    cleared if there is a carry from the most significant bit of the low-order four bits of the           result; set otherwise indicating a ?borrow?.                      format:         bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src    2  4  22  r  r        6 23 r lr   opc src dst 3 6  24 r r        6 25 r ir   opc dst src 3 6  26 r im    examples:  given:  r1  =  12h, r2  =  03h, register 01h  =  21h, register 02h  =  03h, register 03h  =  0ah:   sub r1,r2     r1  =  0fh, r2  =  03h   sub r1,@r2     r1  =  08h, r2  =  03h   sub 01h,02h     register 01h  =  1eh, register 02h  =  03h   sub 01h,@02h     register 01h  =  17h, register 02h  =  03h   sub 01h,#90h     register 01h  =  91h; c, s, and v  =  "1"   sub 01h,#65h     register 01h  =  0bch; c and s  =  "1", v  =  "0"  in the first example, if he working register r1 contains the value 12h and if the register r2  contains the value 03h, the statement "sub  r1,r2" subtracts the source value (03h) from the  destination value (12h) and stores the result (0fh) in the destination register r1. 

 s3c84bb/f84bb  instruction set     6-83   swap  ? swap nibbles  swap     dst  operation:    dst (0 ? 3)   ?   dst (4 ? 7)          the contents of the lower four bits and the upper four bits of the destination operand are swapped.  70 4  3   flags:   c:    undefined.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    undefined.       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst    opc dst    2 4 f0  r          4 f1  ir    examples:  given:  register 00h  =  3eh, register 02h  =  03h, and register 03h  =  0a4h:    swap 00h     register 00h  =  0e3h   swap @02h     register 02h  =  03h, register 03h  =  4ah  in the first example, if the general register 00h contains the value 3eh (00111110b), the  statement "swap  00h" swaps the lower and the upper four bits (nibbles) in the 00h register,  leaving the value 0e3h (11100011b). 

 instruction set    s3c84bb/f84bb  6-84     tcm  ? test complement under mask  tcm   dst,src  operation:     (not dst)  and  src  this instruction tests selected bits in the destination operand for a logic one value. the bits to be  tested are specified by setting a "1" bit in the corresponding position of the source operand  (mask). the tcm statement complements the destination operand, which is then anded with the  source mask. the zero (z) flag can then be checked to determine the result. the destination and  the source operands are unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always cleared to "0".       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  62  r  r          6 63 r lr   opc src dst   3 6 64 r r          6 65 r ir   opc dst src   3 6 66 r im    examples:  given:  r0  =  0c7h, r1  =  02h, r2  =  12h, register 00h  =  2bh, register 01h  =  02h, and                                 register 02h = 23h:   tcm r0,r1     r0  =  0c7h, r1  =  02h, z  =  "1"   tcm r0,@r1     r0  =  0c7h, r1  =  02h, register 02h  =  23h, z  =  "0"   tcm 00h,01h     register 00h  =  2bh, register 01h  =  02h, z  =  "1"   tcm 00h,@01h     register 00h  =  2bh, register 01h  =  02h,               register 02h  =  23h, z  =  "1"   tcm 00h,#34     register 00h  =  2bh, z  =  "0"  in the first example, if the working register r0 contains the value 0c7h (11000111b) and the  register r1 the value 02h (00000010b), the statement "tcm  r0,r1" tests bit one in the  destination register for a "1" value. because the mask value corresponds to the test bit, the z flag  is set to logic one and can be tested to determine the result of the tcm operation. 

 s3c84bb/f84bb  instruction set     6-85   tm   ? test under mask  tm   dst,src  operation:     dst  and  src  this instruction tests selected bits in the destination operand for a logic zero value. the bits to be  tested are specified by setting a "1" bit in the corresponding position of the source operand  (mask), which is anded with the destination operand. the zero (z) flag can then be checked to  determine the result. the destination and the source operands are unaffected.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always reset to "0".       d:    unaffected.       h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  72  r  r          6 73 r lr   opc src dst   3 6 74 r r          6 75 r ir   opc dst src   3 6 76 r im    examples:  given:  r0  =  0c7h, r1  =  02h, r2  =  18h, register 00h  =  2bh, register 01h  =  02h, and                            register 02h = 23h:   tm  r0,r1     r0  =  0c7h, r1  =  02h, z  =  "0"   tm  r0,@r1     r0  =  0c7h, r1  =  02h, register 02h  =  23h, z  =  "0"   tm  00h,01h     register 00h  =  2bh, register 01h  =  02h, z  =  "0"   tm  00h,@01h     register 00h  =  2bh, register 01h =  02h,               register 02h  =  23h, z  =  "0"   tm  00h,#54h     register 00h  =  2bh, z  =  "1"  in the first example, if the working register r0 contains the value 0c7h (11000111b) and the  register r1 the value 02h (00000010b), the statement "tm  r0,r1" tests bit one in the destination  register for a "0" value. because the mask value does not match the test bit, the z flag is cleared  to logic zero and can be tested to determine the result of the tm operation. 

 instruction set    s3c84bb/f84bb  6-86     wfi   ? wait for interrupt  wfi   operation:    the cpu is effectively halted before an interrupt occurs, except that dma transfers can still take                             place during this wait state. the wfi status can be released by an internal interrupt, including a                              fast interrupt.  flags:     no flags are affected.  format:          bytes cycles opcode  (hex)    opc     1 4n 3f    ( n  =  1, 2, 3, ? )     example:  the following sample program structure shows the sequence of operations that follow a "wfi"                             statement:  ei wfi (next instruction) main program . . . . . . interrupt occurs interrupt service routine . . . clear interrupt flag iret service routine completed (enable global interrupt) (wait for interrupt)  

 s3c84bb/f84bb  instruction set     6-87   xor   ? logical exclusive or  xor   dst,src  operation:    dst      dst  xor  src  the source operand is logically exclusive-ored with the destination operand and the result is  stored in the destination. the exclusive-or operation results in a "1" bit being stored whenever  the corresponding bits in the operands are different. otherwise, a "0" bit is stored.  flags:   c:    unaffected.       z:    set if the result is "0"; cleared otherwise.       s:    set if the result bit 7 is set; cleared otherwise.       v:    always reset to "0".       d:    unaffected.     h:    unaffected.  format:          bytes cycles opcode  (hex)  addr mode  dst        src     opc  dst | src      2  4  b2  r  r            6 b3 r lr              opc src dst  3 6 b4 r r            6 b5 r ir              opc dst src  3 6 b6 r im    examples:  given:  r0  =  0c7h, r1  =  02h, r2  =  18h, register 00h  =  2bh, register 01h  =  02h, and         register 02h = 23h:   xor r0,r1     r0  =  0c5h, r1  =  02h   xor r0,@r1     r0  =  0e4h, r1  =  02h, register 02h  =  23h   xor 00h,01h     register 00h  =  29h, register 01h  =  02h   xor 00h,@01h     register 00h  =  08h, register 01h  =  02h,               register 02h  =  23h   xor 00h,#54h     register 00h  =  7fh  in the first example, if the working register r0 contains the value 0c7h and if the register r1  contains the value 02h, the statement "xor  r0,r1" logically exclusive-ors the r1 value with the  r0 value and stores the result (0c5h) in the destination register r0.   

 instruction set    s3c84bb/f84bb  6-88     notes  

 s3c84bb/f84bb  clock circuit     7-1   clock circuit  overview  the clock frequency generated for the s3c84bb/f84bb by an external crystal can range from 1 mhz to 12 mhz.  the maximum cpu clock frequency is 12 mhz. the x in  and x out  pins connect the external oscillator or clock  source to the on-chip clock circuit.  system clock circuit  the system clock circuit has the following components:  ?  external crystal or ceramic resonator oscillation source (or an external clock source)  ?  oscillator stop and wake-up functions  ?  programmable frequency divider for the cpu clock (fxx divided by 1, 2, 8, or 16)  ?  system clock control register, clkcon  x in x out c1 c2 s3c84bb/ f84bb   figure 7-1. main oscillator circuit (crystal or ceramic oscillator)   

 clock circuit    s3c84bb/f84bb  7-2     clock status during power-down modes  the two power-down modes, stop mode and idle mode, affect the system clock as follows:   ?  in stop mode, the main oscillator is halted. stop mode is released, and the oscillator started, by a reset  operation or an external interrupt (with rc delay noise filter), and can be released by internal interrupt too  when the sub-system oscillator is running and watch timer is operating with sub-system clock.  ?  in idle mode, the internal clock signal is gated to the cpu, but not to interrupt structure, timers and timer/  counters. idle mode is released by a reset or by an external or internal interrupt.   main-system oscillator circuit fxx cpu peri selector 2 1/8-1/4096 frequency dividing circuit 1/2 1/8 1/16 1/1 clkcon.4-.3 idle instruction stop instruction   figure 7-2. system clock circuit diagram 

 s3c84bb/f84bb  clock circuit     7-3  system clock control register (clkcon)  the system clock control register, clkcon, is located in the bank 0 of set 1, address d4h. it is read/write  addressable and has the following functions:  ?  oscillator frequency divide-by value  after the main oscillator is activated, and the fxx/16  (the slowest clock speed) is selected as the cpu clock. if  necessary, you can then increase the cpu clock speed to f xx /8, f xx /2, or f xx /1.  system clock control register (clkcon) d4h, set 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 not used (must keep always 0) not used (must keep always 0) divide-by selection bits for cpu clock frequency: 00 = fxx/16 01 = fxx/8 10 = fxx/2 11 = fxx/1 (non-divided)   figure 7-3. system clock control register (clkcon)   

 clock circuit    s3c84bb/f84bb  7-4     notes         

 s3c84bb/f84bb   reset  and power-down     8-1     reset   and power-down   system reset  overview  during a power-on reset, the voltage at v dd  goes to high level and the  reset  pin is forced to low level. the  reset  signal is input through a schmitt trigger circuit where it is then synchronized with the cpu clock. this  procedure brings s3c84bb/f84bb into a known operating status.   to allow time for internal cpu clock oscillation to stabilize, the  reset  pin must be held to low level for a minimum  time interval after the power supply comes within tolerance. the minimum required oscillation stabilization time for  a reset operation is 1 millisecond.  whenever a reset occurs during normal operation (that is, when both v dd  and  reset  are high level), the  reset   pin is forced low and the reset operation starts. all system and peripheral control registers are then reset to their  default hardware values.    in summary, the following sequence of events occurs during a reset operation:  ?  interrupt is disabled.  ?  the watchdog function (basic timer) is enabled.  ?  ports 0-8 are set to input mode.  ?  peripheral control and data registers are disabled and reset to their default hardware values.  ?  the program counter (pc) is loaded with the program reset address in the rom, 0100h.  ?  when the programmed oscillation stabilization time interval has elapsed, the instruction stored in rom  location 0100h (and 0101h) is fetched and executed.  normal mode reset operation  in normal (masked rom) mode, the test pin is tied to v ss . a reset enables access to the 64-kbyte on-chip rom.   note  to program the duration of the oscillation stabilization interval, you make the appropriate settings to the  basic timer control register, btcon,  before  entering stop mode. also, if you do not want to use the basic  timer watchdog function (which causes a system reset if a basic timer counter overflow occurs), you can  disable it by writing '1010b' to the upper nibble of btcon.   

 reset  and power-down    s3c84bb/f84bb  8-2      hardware reset values  table 8-1, 8-2, 8-3 list the reset values for cpu and system registers, peripheral control registers, and peripheral  data registers following a reset operation. the following notation is used to represent reset values:  ?  a "1" or a "0" shows the reset bit value as logic one or logic zero, respectively.  ?  an "x" means that the bit value is undefined after a reset.  ?  a dash ("?") means that the bit is either not used or not mapped, but read 0 is the bit value.  table 8-1. s3c84bb/f84bb set 1 register values after reset   address  bit values after reset  register name  mnemonic dec hex 7 6 5 4 3 2 1 0  timer b control register  tbcon  208 d0h 0 0 0 0 0 0 0 0  timer b data register (high byte)  tbdatah 209 d1h 1 1 1 1 1 1 1 1  timer b data register (low byte)  tbdatal 210 d2h 1 1 1 1 1 1 1 1  basic timer control register  btcon  211 d3h 0 0 0 0 0 0 0 0  clock control register  clkcon 212 d4h 0 0 0 0 0 0 0 0  system flags register  flags  213 d5h x x x x x x 0 0  register pointer 0  rp0  214 d6h 1 1 0 0 0 ? ? ?  register pointer 1  rp1  215 d7h 1 1 0 0 1 ? ? ?  stack pointer (high byte)  sph  216 d8h x x x x x x x x  stack pointer (low byte)  spl  217 d9h x x x x x x x x  instruction pointer (high byte)  iph  218 dah x x x x x x x x  instruction pointer (low byte)  ipl  219 dbh x x x x x x x x  interrupt request register  irq  220 dch 0 0 0 0 0 0 0 0  interrupt mask register  imr  221 ddh x x x x x x x x  system mode register  sym  222 deh 0 ? ? x x x 0 0  register page pointer  pp  223 dfh 0 0 0 0 0 0 0 0     

 s3c84bb/f84bb   reset  and power-down     8-3   table 8-2. s3c84bb/f84bb set 1, bank 0 register values after reset    address  bit values after reset  register name  mnemonic dec hex 7 6 5 4 3 2 1 0  port 0 data register  p0  224 e0h 0 0 0 0 0 0 0 0  port 1 data register  p1  225 e1h 0 0 0 0 0 0 0 0  port 2 data register  p2  226 e2h 0 0 0 0 0 0 0 0  port 3 data register  p3  227 e3h 0 0 0 0 0 0 0 0  port 4 data register  p4  228 e4h 0 0 0 0 0 0 0 0  port 5 data register  p5  229 e5h 0 0 0 0 0 0 0 0  port 6 data register  p6  230 e6h 0 0 0 0 0 0 0 0  port 7 data register  p7  231 e7h 0 0 0 0 0 0 0 0  port 8 data register  p8  232 e8h 0 0 0 0 0 0 0 0  timer a/1 interrupt pending register  tintpnd 233 e9h ? ? 0 0 0 0 0 0  timer a control register  tacon  234 eah 0 0 0 0 0 0 0 ?  timer a data register  tadata  235 ebh 1 1 1 1 1 1 1 1  timer a counter register  tacnt  236 ech 0 0 0 0 0 0 0 0  port 8 control register (high byte)  p8conh 237 edh 1 1 1 1 0 0 0 0  port 8 control register (low byte)  p8conl  238 eeh 0 0 0 0 0 0 0 0  port 8 interrupt/pending register  p8intpnd 239 efh 1 1  0 0 1 1 0 0  port 0 control register  p0con  240 f0h 0 0 0 0 0 0 0 0  port 1 control register  p1con  241 f1h 0 0 0 0 0 0 0 0  port 2 control register (high byte)  p2conh 242 f2h 0 0 0 0 0 0 0 0  port 2 control register (low byte)  p2conl  243 f3h 0 0 0 0 0 0 0 0  port 3 control register (high byte)  p3conh 244 f4h 0 0 0 0 0 0 0 0  port 3 control register (low byte)  p3conl  245 f5h 0 0 0 0 0 0 0 0  port 4 control register (high byte)  p4conh 246 f6h 0 0 0 0 0 0 0 0  port 4 control register (low byte)  p4conl  247 f7h 0 0 0 0 0 0 0 0  port 5 control register (high byte)  p5conh 248 f8h 0 0 0 0 0 0 0 0  port 5 control register (low byte)  p5conl  249 f9h 0 0 0 0 0 0 0 0  port 4 interrupt control register  p4int  250 fah 0 0 0 0 0 0 0 0  port 4 interrupt/pending register  p4intpnd 251 fbh 0 0 0 0 0 0 0 0  location fch is factory use only  basic timer counter register  btcnt  253 fdh 0 0 0 0 0 0 0 0  location feh is not mapped  interrupt priority register  ipr  255 ffh x x x x x x x x 

 reset  and power-down    s3c84bb/f84bb  8-4      table 8-3. s3c84bb/f84bb set 1, bank 1 register values after reset   address  bit values after reset  register name  mnemonic dec hex 7 6 5 4 3 2 1 0  sio data register  siodata 224 e0h 0 0 0 0 0 0 0 0  sio control register  siocon  225 e1h 0 0 0 0 0 0 0 0  uart0 data register  udata0  226 e2h 1 1 1 1 1 1 1 1  uart0 control register  uartcon0 227 e3h 0 0 0 0 0 0 0 0  uart0 baud rate data register  brdata0 228 e4h 1 1 1 1 1 1 1 1  uart0,1 pending register  uartpnd 229 e5h - - - - 0 0 0 0  timer 1(0) data register (high byte)  t1datah0 230 e6h 1 1 1 1 1 1 1 1  timer 1(0) data register (low byte)  t1datal0 231 e7h 1 1 1 1 1 1 1 1  timer 1(1) data register (high byte)  t1datah1 232 e8h 1 1 1 1 1 1 1 1  timer 1(1) data register (low byte)  t1datal1 233 e9h 1 1 1 1 1 1 1 1  timer 1(0) control register  t1con0  234 eah 0 0 0 0 0 0 0 0  timer 1(1) control register  t1con1  235 ebh 0 0 0 0 0 0 0 0  timer 1(0) counter register(high byte)  t1cnth0 236 ech 0 0 0 0 0 0 0 0  timer 1(0) counter register(low byte)  t1cntl0 237 edh 0 0 0 0 0 0 0 0  timer 1(1) counter register(high byte)  t1cnth1 238 eeh 0 0 0 0 0 0 0 0  timer 1(1) counter register(low byte)  t1cntl1 239 efh 0 0 0 0 0 0 0 0  timer c(0) data register  tcdata0 240 f0h 1 1 1 1 1 1 1 1  timer c(1) data register  tcdata1 241 f1h 1 1 1 1 1 1 1 1  timer c(0) control register  tccon0  242 f2h 0 0 0 0 0 0 0 0  timer c(1) control register  tccon1  243 f3h 0 0 0 0 0 0 0 0  sio prescaler control register  siops  244 f4h 0 0 0 0 0 0 0 0  port 7 control register  p7con  245 f5h 0 0 0 0 0 0 0 0  d/a converter data register  dadata  246 f6h 0 0 0 0 0 0 0 0  a/d, d/a converter control register  adacon  247 f7h 0 0 0 0 0 0 0 0  a/d converter data register(high byte)  addatah 248 f8h 0 0 0 0 0 0 0 0  a/d converter data register(low byte)   addatal 249 f9h 0 0 0 0 0 0 0 0  uart1 data register  udata1 250 fah 1 1 1 1 1 1 1 1  uart1 control register  uartcon1 251 fbh 0 0 0 0 0 0 0 0  uart1 baud rate data register  brdata1 252 fch 1 1 1 1 1 1 1 1  flash memory control register  fmcon 253 fdh 0 0 0 0 0 0 0 0  pattern generation control register  pgcon 254 feh ? ? ? ? 0 0 0 0  pattern generation data register  pgdata 255 ffh 0 0 0 0 0 0 0 0 

 s3c84bb/f84bb   reset  and power-down     8-5   power-down modes  stop mode  stop mode is invoked by the instruction stop (opcode 7fh). in stop mode, the operation of the cpu and all  peripherals is halted. that is, the on-chip main oscillator stops and the supply current is reduced to less than 3 a.  all system functions stop when the clock "freezes," but data stored in the internal register file is retained. stop  mode can be released in one of two ways: by a reset or by interrupts.  note  do not use stop mode if you are using an external clock source because x in  input must be restricted  internally to v ss  to reduce current leakage.  using reset to release stop mode  stop mode is released when the reset signal is released and returns to high level: all system and peripheral  control registers are reset to their default hardware values and the contents of all data registers are retained. a  reset operation automatically selects a slow clock (1/16) because clkcon.3 and clkcon.4 are cleared to '00b'.  after the programmed oscillation stabilization interval has elapsed, the cpu starts the system initialization routine  by fetching the program instruction stored in rom location 0100h (and 0101h).   using an external interrupt to release stop mode  external interrupts with an rc-delay noise filter circuit can be used to release stop mode. which interrupt you can  use to release stop mode in a given situation depends on the microcontroller's current internal operating mode.  the external interrupts in the S3F84BB interrupt structure that can be used to release stop mode are:  ?  external interrupts p4.0/int0-p4.7/int7, p8.4/int8 and p8.5/int9  please note the following conditions for stop mode release:  ?  if you release stop mode using an external interrupt, the current values in system and peripheral control  registers are unchanged.  ?  if you use an external interrupt for stop mode release, you can also program the duration of the oscillation  stabilization interval. to do this, you must make the appropriate control and clock settings  before  entering stop  mode.  ?  when the stop mode is released by external interrupt, the clkcon.4 and clkcon.3 bit-pair setting remains  unchanged and the currently selected clock value is used.  ?  the external interrupt is serviced when the stop mode release occurs. following the iret from the service  routine, the instruction immediately following the one that initiated stop mode is executed.  using an internal interrupt to release stop mode   activate any enabled interrupt, causing stop mode to be released.  other things are same as using external  interrupt. 

 reset  and power-down    s3c84bb/f84bb  8-6      idle mode  idle mode is invoked by the instruction idle (opcode 6fh). in idle mode, cpu operations are halted while some  peripherals remain active. during idle mode, the internal clock signal is gated away from the cpu, but all  peripherals timers remain active. port pins retain the mode (input or output) they had at the time idle mode was  entered.  there are two ways to release idle mode:  1.  execute a reset. all system and peripheral control registers are reset to their default values and the contents  of all data registers are retained. the reset automatically selects the slow clock fxx/16 because clkcon.4  and clkcon.3 are cleared to ?00b?. if interrupts are masked, a reset is the only way to release idle mode.  2.  activate any enabled interrupt, causing idle mode to be released. when you use an interrupt to release idle  mode, the clkcon.4 and clkcon.3 register values remain unchanged, and the currently selected clock  value is used. the interrupt is then serviced. when the return-from-interrupt (iret) occurs, the instruction  immediately following the one that initiated idle mode is executed.     

 s3c84bb/f84bb   i/o ports     9-1   i/o ports  overview  the s3c84bb/f84bb microcontroller has nine bit-programmable i/o ports, p0-p8. the port 8 are 6-bit ports and  the others are 8-bit ports. this gives a total of 70 i/o pins. each port can be flexibly configured to meet application  design requirements. the cpu accesses ports by directly writing or reading port registers. no special i/o  instructions are required.   table 9-1 gives you a general overview of the s3c84bb/f84bb i/o port functions.  table 9-1. s3c84bb/f84bb port configuration overview  port configuration options  0  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  alternately, p0.0-p0.7 can be used as the pg output port (pg0-pg7).  1  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  2  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  alternately, p2.0~p2.7 can be used as i/o for timera, timerb, dac, sio  3  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  alternately, p3.0~p3.7 can be used as i/o for timerc0/c1, timer10/11  4  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  p4.0-p4.7 can alternately be used as inputs for external interrupts int0-int7, respectively (with noise  filters and interrupt controller)  5  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  alternately, p5.0~p5.3 can be used as i/o for serial port uart0, uart1, respectively.  6  n-channel, open-drain output only port.  7  general-purpose digital input ports. alternatively used as analog input pins for a/d converter  modules.  8  bit programmable port; input or output mode selected by software; input or push-pull output. software  assignable pull-up.  p8.4, p8.5 can alternately be used as inputs for external interrupts int8, int9, respectively (with  noise filters and interrupt controller)   

 i/o ports    s3c84bb/f84bb  9-2     port data registers  table 9-2 gives you an overview of the register locations of all five s3c84bb/f84bb i/o port data registers. data  registers for ports 0, 1, 2, 3, 4, 5, 6, 7 and 8 have the general format shown in table 9-2.   table 9-2. port data register summary  register name  mnemonic  decimal  hex  location  r/w  port 0 data register  p0  224  e0h  set 1, bank 0  r/w  port 1 data register  p1  225  e1h  set 1, bank 0  r/w  port 2 data register  p2  226  e2h  set 1, bank 0  r/w  port 3 data register  p3  227  e3h  set 1, bank 0  r/w  port 4 data register  p4  228  e4h  set 1, bank 0  r/w  port 5 data register  p5  229  e5h  set 1, bank 0  r/w  port 6 data register  p6  230  e6h  set 1, bank 0  r/w  port 7 data register  p7  231  e7h  set 1, bank 0  r/w  port 8 data register  p8  232  e8h  set 1, bank 0  r/w 

 s3c84bb/f84bb   i/o ports     9-3  port 0  port 0 is an 8-bit i/o port that you can use two ways:  ? general-purpose i/o  ?  alternative function: pgout7-pgout0  port 0 is accessed directly by writing or reading the port 0 data register, p0 at location e0h in set 1, bank 0.  port 0 control register (p0con)  port 0 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 0:  p0con (f0h).  when programming the port, please remember that any alternative peripheral i/o function you configure using the  port 0 control registers must also be enabled in the associated peripheral module.   

 i/o ports    s3c84bb/f84bb  9-4     port 0 control register (p0con) f0h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p0.7/p0.6/ p0.5/p0.4/ pgout[7:4] p0.3/p0.2/ pgout[3:2] p0.1/ pgout[1] p0.0/ pgout[0] .7 .6 bit/p0.7/p0.6/p0.5/p0.4 00 01 10 11 input mode input mode, pull-up push-pull output alternative function mode(pgout[7:4]) .5 .4 bit/p0.3/p0.2 00 01 10 11 .3 .2 bit/p0.1 00 01 10 11 .1 .0 bit/p0.0 00 01 10 11 input mode input mode, pull-up push-pull output alternative function mode(pgout[3:2]) input mode input mode, pull-up push-pull output alternative function mode(pgout[1]) input mode input mode, pull-up push-pull output alternative function mode(pgout[0])   figure 9-1. port 0 control register (p0con)   

 s3c84bb/f84bb   i/o ports     9-5  port 1  port 1 is an 8-bit i/o port that you can use one ways:  ? general-purpose i/o  port 1 is accessed directly by writing or reading the port 1 data register, p1 at location e1h in set 1, bank 0.  port 1 control register (p1con)  port 1 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 0:  p1con (f1h).  when programming the port, please remember that any alternative peripheral i/o function you configure using the  port 1 control registers must also be enabled in the associated peripheral module.   

 i/o ports    s3c84bb/f84bb  9-6     port 1 control register (p1con) f1h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p1.7/p1.6 p1.5/p1.4 p1.3/p1.2 p1.0/p1.0 .7 .6 bit/p1.7/p1.6 00 01 1x input mode input mode, pull-up push-pull output .5 .4 bit/p1.5/p1.4 .3 .2 bit/p1.3/p1.2 .1 .0 bit/p1.1//p.0 input mode input mode, pull-up push-pull output input mode input mode, pull-up push-pull output input mode input mode, pull-up push-pull output 00 01 1x 00 01 1x 00 01 1x   figure 9-2. port 1 control register (p1con)   

 s3c84bb/f84bb   i/o ports     9-7  port 2  port 2 is an 8-bit i/o port with individually configurable pins. port 2 pins are accessed directly by writing or reading  the port 2 data register, p2 at location e2h in set 1, bank 0. p2.0?p2.7 can serve as inputs, outputs (push pull) or  you can configure the following alternative functions:  ?  low-byte pins (p2.0-p2.3): daout, sck, si, so  ?  high-byte pins (p2.4-p2.7): taout, tacap, tack, tbpwm  port 2 control register (p2conh, p2conl)  port 2 has two 8-bit control registers: p2conh for p2.4?p2.7 and p2conl for p2.0?p2.3. a reset clears the  p2conh and p2conl registers to ?00h?, configuring all pins to input mode. you use control registers settings to  select input or output mode (push-pull) and enable the alternative functions.  when programming the port, please remember that any alternative peripheral i/o function you configure using the  port 2 control registers must also be enabled in the associated peripheral module.   

 i/o ports    s3c84bb/f84bb  9-8     port 2 control register, high byte (p2conh) f2h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p2.4/tbpwm .7 .6 bit/p2.7/taout 00 01 10 11 input mode input mode, pull-up push-pull output alternative output mode(taout) .5 .4 bit/p2.6/tacap 00 01 10 11 .3 .2 bit/p2.5/tack 00 01 10 11 .1 .0 bit/p2.4/tbpwm 00 01 10 11 p2.5/tack p2.6/tacap p2.7/taout note:     when use this port 2, user must be care of the pull-up resistance status. input mode(tacap) input mode, pull-up(tacap) push-pull output alternative output mode(not used) input mode(tack) input mode, pull-up(tack) push-pull output alternative output mode(not used) input mode input mode, pull-up push-pull output alternative output mode(tbpwm)   figure 9-3. port 2 high-byte control register (p2conh)   

 s3c84bb/f84bb   i/o ports     9-9  port 2 control register, low byte (p2conl) f3h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p2.0/so .7 .6 bit/p2.3/daout 00 01 10 11 input mode input mode, pull-up push-pull output alternative output mode(daout) .5 .4 bit/p2.2/sck 00 01 10 11 .3 .2 bit/p2.1/si 00 01 10 11 .1 .0 bit/p2.0/so 00 01 10 11 p2.1/si p2.2/sck p2.3/ daout note:     when use this port 2, user must be care of the pull-up resistance status. input mode(sck input) input mode, pull-up(sck input) push-pull output alternative output mode(sck output) input mode(si) input mode, pull-up(si) push-pull output alternative output mode(not used) input mode input mode, pull-up push-pull output alternative output mode(so)   figure 9-4. port 2 low-byte control register (p2conl)   

 i/o ports    s3c84bb/f84bb  9-10     port 3  port 3 is an 8-bit i/o port that can be used for general-purpose i/o. the pins are accessed directly by writing or  reading the port 3 data register, p3 at location e3h in set 1, bank 0. p3.7?p3.0 can serve as inputs, outputs (push  pull) or you can configure the following alternative functions:  ?  low-byte pins (p3.0-p3.3): t1cap1, t1cap0, t1ck1, t1ck0  ?  high-byte pins (p3.4-p3.7): tcout1, tcout0, t1out1, t1out0  to individually configure the port 3 pins p3.0?p3.7, you make bit-pair settings in two control registers located in set  1, bank 0: p3conl (low byte, f5h) and p3conh (high byte, f4h).  port 3 control registers (p3conh, p3conl)  two 8-bit control registers are used to configure port 3 pins: p3conl (f5h, set 1, bank 0) for pins p3.0?p3.3 and  p3conh (f4h, set 1, bank 0) for pins p3.4?p3.7. each byte contains four bit-pairs and each bit-pair configures  one pin of port 3.    

 s3c84bb/f84bb   i/o ports     9-11  port 3 control register, high byte (p3conh) f4h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p3.4/t1out0 .7 .6 bit : p3.7/tcout1 00 01 10 11 input mode input mode, pull-up push-pull output alternative function(tcout1) .5 .4 bit : p3.6/tcout0 00 01 10 11 .3 .2 bit : p3.5/t1out1 00 01 10 11 .1 .0 bit : p3.4/t1out0 00 01 10 11 p3.5/t1out1 p3.6/tcout0 p3.7/tcout1 input mode input mode, pull-up push-pull output alternative function(tcout0) input mode input mode, pull-up push-pull outputt alternative function(t1out1) input mode input mode, pull-up push-pull outputt alternative function(t1out0)   figure 9-5. port 3 high-byte control register (p3conh) 

 i/o ports    s3c84bb/f84bb  9-12     port 3 control register, low byte (p3conl) f5h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p3.0/t1ck0 .7 .6 bit/p3.3/t1cap1 00 01 1x input mode(t1cap1) input mode, pull-up(t1cap1) push-pull output .5 .4 bit/p3.2/t1cap0 .3 .2 bit/p3.1/t1ck1 .1 .0 bit/p3.0/t1ck0 p3.1/t1ck1 p3.2/t1cap0 p3.3/t1cap1 00 01 1x input mode(t1cap0) input mode, pull-up(t1cap0) push-pull output 00 01 1x input mode(t1ck1) input mode, pull-up(t1ck1) push-pull output 00 01 1x input mode(t1ck0) input mode, pull-up(t1ck0) push-pull output   figure 9-6. port 3 low-byte control register (p3conl) 

 s3c84bb/f84bb   i/o ports     9-13  port 4  port 4 is an 8-bit i/o port that you can use two ways:  ? general-purpose i/o  ?  external interrupt inputs for int0-int7  port 4 is accessed directly by writing or reading the port 4 data register, p4 at location e4h in set 1, bank 0.  port 4 control register (p4conh, p4conl)  port 4 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0:  p4conl (low byte, f7h) and p4conh (high byte, f6h).  when you select output mode, a push-pull circuit is configured. in input mode, three different selections are  available:  ?  schmitt trigger input with interrupt generation on falling signal edges.  ?  schmitt trigger input with interrupt generation on rising signal edges.  ?   schmitt trigger input with pull-up resistor and interrupt generation on falling signal edges.   port 4 interrupt enable and pending registers (p4int, p4intpnd)  to process external interrupts at the port 4 pins, two additional control registers are provided: the port 4 interrupt  enable register p4int (fah, set 1, bank 0) and the port 4 interrupt pending register p4intpnd (fbh, set 1, bank  0).  the port 4 interrupt pending register p4intpnd lets you check for interrupt pending conditions and clear the  pending condition when the interrupt service routine has been initiated. the application program detects interrupt  requests by polling the p4intpnd register at regular intervals.  when the interrupt enable bit of any port 4 pin is ?1?, a rising or falling signal edge at that pin will generate an  interrupt request. the corresponding p4intpnd bit is then automatically set to ?1? and the irq level goes low to  signal the cpu that an interrupt request is waiting. when the cpu acknowledges the interrupt request, application  software must clear the pending condition by writing a ?0? to the corresponding p4intpnd bit. 

 i/o ports    s3c84bb/f84bb  9-14     port 4 control register, high byte (p4conh) f6h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p4.7/ int7 p4.6/ int6 p4.5/ int5 p4.4/ int4 .7 .6 bit/p4.7int7 00 01 10 11 input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output .5 .4 bit/p4.6/int6 00 01 10 11 .3 .2 bit/p4.5/int5 00 01 10 11 .1 .0 bit/p4.4/int4 00 01 10 11 input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output   figure 9-7. port 4 high-byte control register (p4conh)       

 s3c84bb/f84bb   i/o ports     9-15  port 4 control register, low byte (p4conl) f7h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p4.3/ int3 p4.2/ int2 p4.1/ int1 p4.0/ int0 .7 .6 bit/p4.3/int3 00 01 10 11 input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output .5 .4 bit/p4.2/int2 00 01 10 11 .3 .2 bit/p4.1/int1 00 01 10 11 .1 .0 bit/p4.0/int0 00 01 10 11 input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output   figure 9-8. port 4 low-byte control register (p4conl)     

 i/o ports    s3c84bb/f84bb  9-16     port 4 interrupt control register (p4int) fah, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 int7 p4int bit configuration settings: 0 1 interrupt disable interrupt enable int6 int5 int4 int3 int2 int1 int0   figure 9-9. port 4 interrupt control register (p4int)  port 4 interrupt pending register (p4intpnd) fbh, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 pnd7 p4intpnd bit configuration settings: 0 1 interrupt request is not pending, pending bit clear when write 0 interrupt request is pending pnd6 pnd5 pnd4 pnd3 pnd2 pnd1 pnd0   figure 9-10. port 4 interrupt pending register (p4intpnd) 

 s3c84bb/f84bb   i/o ports     9-17  port 5  port 5 is an 8-bit i/o port with individually configurable pins. port 5 pins are accessed directly by writing or reading  the port 5 data register, p5 at location e5h in set 1, bank 0. p5.7?p5.4 can serve as inputs, outputs (push pull or  open-drain). p5.3?p5.0 can serve as inputs, outputs (push pull) or you can configure the following alternative  functions:  ?  low-byte pins (p5.3-p5.0): rxd0, txd0, rxd1, txd1  port 5 control register (p5conh, p5conl)  port 5 has two 8-bit control registers: p5conh for p5.4?p5.7 and p5conl for p5.0?p5.3. a reset clears the  p5conh and p5conl registers to ?00h?, configuring all pins to input mode. you use control registers settings to  select input or output mode (push-pull, open-drain) and enable the alternative functions.  when programming the port, please remember that any alternative peripheral i/o function you configure using the  port 5 control registers must also be enabled in the associated peripheral module.   

 i/o ports    s3c84bb/f84bb  9-18     port 5 control register, high byte (p5conh) f8h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p5.4 .7 .6 bit : p5.7 00 01 10 11 input mode input mode, pull-up push-pull output open-drain mode .5 .4 bit : p5.6 00 01 10 11 .3 .2 bit : p5.5 00 01 10 11 .1 .0 bit : p5.4 00 01 10 11 p5.5 p5.6 p5.7 input mode input mode, pull-up push-pull output open-drain mode input mode input mode, pull-up push-pull output open-drain mode input mode input mode, pull-up push-pull output open-drain mode   figure 9-11. port 5 high-byte control register (p5conh)   

 s3c84bb/f84bb   i/o ports     9-19  port 5 control register, low byte (p5conl) f9h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p5.0/ txd1 .7 .6 bit/p5.3/rxd0 00 01 10 11 input mode(rxd0 input) input mode, pull-up(rxd0 input) push-pull output alternative output mode(rxd0 output) .5 .4 bit/p5.2/txd0 00 01 10 11 .3 .2 bit/p5.1/rxd1 00 01 10 11 .1 .0 bit/p5.0/txd1 00 01 10 11 p5.1/ rxd1 p5.2/ txd0 p5.3/ rxd0 input mode input mode, pull-up push-pull output alternative output mode(txd0 output) input mode(rxd1 input) input mode, pull-up(rxd1 input) push-pull output alternative output mode(rxd1 output) input mode input mode, pull-up push-pull output alternative output mode(txd1 output)   figure 9-12. port 5 low-byte control register (p5conl) 

 i/o ports    s3c84bb/f84bb  9-20     port 6  port 6 is an 8-bit open drain output only port pins. port 6 pins are accessed directly by writing the port6 data  register, p6 at location e6h  in set 1, bank 0.   

 s3c84bb/f84bb   i/o ports     9-21  port 7  port 7 is an 8-bit input port that you can use two ways:  ? general-purpose input  ?  alternative function: adc0-adc7 input  port 7 is accessed directly by reading the port 7   data register, p7 at location e7h in set 1, bank 0.  port 7 control register (p7con)  port 7 pins are configured individually by bit-pair settings in one control registers located in set 1, bank 1:  p7con (f5h).  when programming the port, please remember that any alternative peripheral i function you configure using the  port 7 control registers must also be enabled in the associated peripheral module.   

 i/o ports    s3c84bb/f84bb  9-22     port 7 control register (p7con) f5h, set 1, bank 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p7.7/ adc7 .7 bit : p7.7/adc7 0 1 input mode adc input mode p7.6/ adc6 p7.5/ adc5 p7.4/ adc4 p7.3/ adc3 p7.2/ adc2 p7.1/ adc1 p7.0/ adc0 .6 bit : p7.6/adc6 0 1 input mode adc input mode .5 bit : p7.5/adc5 0 1 input mode adc input mode .4 bit : p7.4/adc4 0 1 input mode adc input mode .3 bit : p7.3/adc3 0 1 input mode adc input mode .2 bit : p7.2/adc2 0 1 input mode adc input mode .1 bit : p7.1/adc1 0 1 input mode adc input mode .0 bit : p7.0/adc0 0 1 input mode adc input mode   figure 9-13. port 7 control register (p7con) 

 s3c84bb/f84bb   i/o ports     9-23  port 8  port 8 is an 8-bit i/o port that you can use two ways:  ? general-purpose i/o  ?  external interrupt inputs for int8-int9  port 8 is accessed directly by writing or reading the port 8 data register, p8 at location e8h in set 1, bank 0.  port 8 control register (p8conh, p8conl)  port 8 pins are configured individually by bit-pair settings in two control registers located in set 1, bank 0:  p8conl (low byte, eeh) and p8conh (high byte, edh).  when you select output mode, a push-pull circuit is configured. in input mode, three different selections are  available:  ?  schmitt trigger input with interrupt generation on falling signal edges.  ?  schmitt trigger input with interrupt generation on rising signal edges.  ?  schmitt trigger input with pull-up resistor and interrupt generation on falling signal edges.  port 8 interrupt enable and pending registers (p8intpnd)  to process external interrupts at the port 8 pins, one additional control register is provided: the port 8 interrupt  enable register p8intpnd (efh, set 1, bank 0).  the port 8 interrupt pending register p8intpnd lets you check for interrupt pending conditions and clear the  pending condition when the interrupt service routine has been initiated. the application program detects interrupt  requests by polling the p8intpnd register at regular intervals.  when the interrupt enable bit of any port 8 pin is ?1?, a rising or falling signal edge at that pin will generate an  interrupt request. the corresponding p8intpnd bit is then automatically set to ?1? and the irq level goes low to  signal the cpu that an interrupt request is waiting. when the cpu acknowledges the interrupt request, application  software must the clear the pending condition by writing a ?0? to the corresponding p8intpnd bit. 

 i/o ports    s3c84bb/f84bb  9-24     port 8 control register, high byte (p8conh) edh, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 not used p8.5/ int9 p8.4/ int8 .3 .2 bit : p8.5/int9 00 01 10 11 .1 .0 bit : p8.4/int8 00 01 10 11 input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output input mode; (falling edge interrupt) input mode; (rising edge interrupt) input mode, pull-up; (falling edge interrupt) push-pull output   figure 9-14. port 8 high-byte control register (p8conh)       

 s3c84bb/f84bb   i/o ports     9-25  port 8 control register, low byte (p8conl) eeh, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 p8.3 p8.2 p8.1 p8.0 .7 .6 bit : p8.3 00 01 1x input mode input mode, pull-up push-pull output .5 .4 bit : p8.2 .3 .2 bit : p8.1 .1 .0 bit : p8.0 00 01 1x input mode input mode, pull-up push-pull output 00 01 1x input mode input mode, pull-up push-pull output 00 01 1x input mode input mode, pull-up push-pull output   figure 9-15. port 8 low-byte control register (p8conl) 

 i/o ports    s3c84bb/f84bb  9-26     interrupt request is not pending, pending bit clear when write 0 interrupt request is not pending, pending bit clear when write 0 port 8 interrupt pending register (p8intpnd) efh, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 .5 bit : p8.5/pnd9 0 1 interrupt request is pending not used p8.5/ pnd9 p8.4/ pnd8 not used p8.5/ int9 p8.4/ int8 .4 bit : p8.4/pnd8 0 1 interrupt request is pending .1 bit : p8.5/int9 0 1 disable interrupt enable interrupt .0 bit : p8.4/int8 0 1 disable interrupt enable interrupt   figure 9-16. port 8 interrupt pending register (p8intpnd)   

 s3c84bb/f84bb    basic timer      10-1     basic timer    overview  basic timer (bt)  you can use the basic timer (bt) in two different ways:   ?  as a watchdog timer to provide an automatic reset mechanism in the event of a system malfunction.  ?  to signal the end of the required oscillation stabilization interval after a reset or a stop mode release.   the functional components of the basic timer block are:  ?  clock frequency divider (fxx divided by 4096, 1024 or 128) with multiplexer  ?  8-bit basic timer counter, btcnt (set 1, bank 0, fdh, read-only)  ?  basic timer control register, btcon (set 1, d3h, read/write)  basic timer control register (btcon)  the basic timer control register, btcon, is used to select the input clock frequency, to clear the basic timer  counter and frequency dividers, and to enable or disable the watchdog timer function. it is located in set 1, address  d3h, and is read/write addressable using register addressing mode.  a reset clears btcon to '00h'. this enables the watchdog function and selects a basic timer clock frequency of  f xx /4096. to disable the watchdog function, write the signature code '1010b' to the basic timer register control bits  btcon.7?btcon.4.  the 8-bit basic timer counter, btcnt (set 1, bank 0, fdh), can be cleared at any time during normal operation by  writing a "1" to btcon.1. to clear the frequency dividers, write a "1" to btcon.0. 

 basic timer    s3c84bb/f84bb  10-2     basic timer control register (btcon) d3h, set 1, r/w lsb msb.7.6.5.4.3.2.1.0 divider clear bit: 0 = no effect 1 = clear divider basic timer counter clear bit: 0 = no effect 1 = clear btcnt basic timer input clock selection bit: 00 = fxx/4096 01 = fxx/1024 10 = fxx/128 11 = fxx/16 (not used) watchdog timer enable bit: 1010b = disable watchdog function other value  = enable watchdog function   figure 10-1. basic timer control register (btcon) 

 s3c84bb/f84bb    basic timer      10-3   basic timer function description  watchdog timer function  you can program the basic timer overflow signal (btovf) to generate a reset by setting btcon.7?btcon.4 to  any value other than "1010b". (the "1010b" value disables the watchdog function.) a reset clears btcon to  "00h", automatically enabling the watchdog timer function. a reset also selects the cpu clock (as determined by  the current clkcon register setting), divided by 4096, as the bt clock.  the mcu is reset whenever a basic timer counter overflow occurs, during normal operation, the application  program must prevent the overflow, and the accompanying reset operation, from occurring, to do this, the btcnt  value must be cleared (by writing a ?1? to btcon.1) at regular intervals.   if a system malfunction occurs due to circuit noise or some other error condition, the bt counter clear operation  will not be executed and a basic timer overflow will occur, initiating a reset. in other words, during the normal  operation, the basic timer overflow loop (a bit 7 overflow of the 8-bit basic timer counter, btcnt) is always broken  by a btcnt clear instruction. if a malfunction does occur, a reset is triggered automatically.  oscillation stabilization interval timer function  you can also use the basic timer to program a specific oscillation stabilization interval following a reset or when  stop mode has been released by an external interrupt.   in stop mode, whenever a reset or an external interrupt occurs, the oscillator starts. the btcnt value then starts  increasing at the rate of fxx/4096 (for reset), or at the rate of the preset clock source (for an external interrupt).  when btcnt.4 overflows, a signal is generated to indicate that the stabilization interval has elapsed and to gate  the clock signal off to the cpu so that it can resume normal operation.   in summary, the following events occur when stop mode is released:  1.  during stop mode, a power-on reset or an interrupt occurs to trigger the stop mode release and oscillation  starts.  2.  if a power-on reset occurred, the basic timer counter will increase at the rate of fxx/4096. if an interrupt is used  to release stop mode, the btcnt value increases at the rate of the preset clock source.  3.  clock oscillation stabilization interval begins and continues until bit 4 of the basic timer counter overflows.  4.  when a btcnt.4 overflow occurs, normal cpu operation resumes.   

 basic timer    s3c84bb/f84bb  10-4     note: during a power-on reset operation, the cpu is idle during the required oscillation stabilization interval (until bit 4 of the basic timer counter overflows). mux fxx/4096 div fxx/1024 fxx/128 fxx bits 3, 2 bit 0 basic timer control register (write '1010xxxxb' to disable) clear bit 1 reset or stop data bus 8-bit up counter (btcnt, read-only) start the cpu  (note) ovf reset r   figure 10-2. basic timer block diagram       

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-1     8-bit timer a/b/c(0/1)  8-bit timer a  overview  the 8-bit timer a is an 8-bit general-purpose timer/counter. timer a has three operating modes, you can select  one of them using the appropriate tacon setting:   ?  interval timer mode (toggle output at taout pin)  ?  capture input mode with a rising or falling edge trigger at the tacap pin  ?  pwm mode (tapwm); pwm output shares its output port with taout pin  timer a has the following functional components:  ?  clock frequency divider (fxx divided by 1024, 256, or 64) with multiplexer  ?  external clock input pin (tack)   ?  8-bit counter (tacnt), 8-bit comparator, and 8-bit reference data register (tadata)  ?  i/o pins for capture input (tacap) or pwm or match output (tapwm, taout)  ?  timer a overflow interrupt (irq0, vector bah) and match/capture interrupt (irq0, vector b8h) generation  ?  timer a control register, tacon (set 1, bank0, eah, read/write) 

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-2     function description  timer a interrupts (irq0, vectors b8h and bah)  the timer a module can generate two interrupts: the timer a overflow interrupt (taovf), and the timer a match/  capture interrupt (taint). taovf is interrupt level irq0, vector bah. taint also belongs to interrupt level irq0,  but is assigned the separate vector address, b8h.   a timer a overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.  a  timer a match/capture interrupt, taint pending condition is also cleared by hardware when it has been serviced.  interval timer function  the timer a module can generate an interrupt: the timer a match interrupt (taint). taint belongs to interrupt  level irq0, and is assigned the separate vector address, b8h.   when timer a match interrupt occurs and is serviced by the cpu, the pending condition is cleared automatically by  hardware.   in interval timer mode, a match signal is generated and taout is toggled when the counter value is identical to  the value written to the ta reference data register, tadata. the match signal generates a timer a match interrupt  (taint, vector b8h) and clears the counter.   if, for example, you write the value 10h to tadata and 0ah to tacon, the counter will increment until it reaches  10h. at this point, the ta interrupt request is generated, the counter value is reset, and counting resumes.   pulse width modulation mode  pulse width modulation (pwm) mode lets you program the width (duration) of the pulse that is output at the  tapwm pin. as in interval timer mode, a match signal is generated when the counter value is identical to the value  written to the timer a data register. in pwm mode, however, the match signal does not clear the counter. instead,  it runs continuously, overflowing at ffh, and then continues incrementing from 00h.  although timer a overflow interrupt is occurred, this interrupt is not typically used in pwm-type applications.  instead, the pulse at the tapwm pin is held to low level as long as the reference data value is  less than or equal  to  (    ) the counter value and then the pulse is held to high level for as long as the data value is  greater than  ( > )  the counter value. one pulse width is equal to t clk   �  256 .  capture mode  in capture mode, a signal edge that is detected at the tacap pin opens a gate and loads the current counter value  into the ta data register. you can select rising or falling edges to trigger this operation.  timer a also gives you capture input source: the signal edge at the tacap pin. you select the capture input by  setting the value of the timer a capture input selection bit in the port 2 control register, p2conh, (set 1, bank 0,  f2h). when p2conh.5.4 is 00, the tacap input or normal input is selected. when p2conh.5.4 is set to 10,  normal output is selected.  both kinds of timer a interrupts can be used in capture mode: the timer a overflow interrupt is generated whenever  a counter overflow occurs; the timer a match/capture interrupt is generated whenever the counter value is loaded  into the ta data register.   by reading the captured data value in tadata, and assuming a specific value for the timer a clock frequency, you  can calculate the pulse width (duration) of the signal that is being input at the tacap pin. 

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-3   timer a control register (tacon)  you use the timer a control register, tacon, to  ?  select the timer a operating mode (interval timer, capture mode, or pwm mode)   ?  select the timer a input clock frequency   ?  clear the timer a counter, tacnt  ?  enable the timer a overflow interrupt or timer a match/capture interrupt  ?  clear timer a match/capture interrupt pending conditions  tacon is located in set 1, bank 0 at address eah, and is read/write addressable using register addressing  mode.  a reset clears tacon to '00h'. this sets timer a to normal interval timer mode, selects an input clock frequency of  fxx/1024, and disables all timer a interrupts. you can clear the timer a counter at any time during normal operation  by writing a "1" to tacon.3.  the timer a overflow interrupt (taovf) is interrupt level irq0 and has the vector address bah. when a timer a  overflow interrupt occurs and is serviced by the cpu, the pending condition is cleared automatically by hardware.  to enable the timer a match/capture interrupt (irq0, vector b8h), you must write tacon.1 to "1". to generate  the exact time interval, you should write ?1? to tacon.3 and ?0? to tintpnd.0, which cleared counter and  interrupt pending bit .   timer a control register (tacon) eah, set 1, bank 0, r/w, reset: 00h lsb msb .7 .6 .5 .4 .3 .2 .1 .0 timer a match/capture interrupt enable bit: 0 = disable interrupt 1 = enable interrrupt timer a input clock selection bit: 00 = fxx/1024 01 = fxx/256 10 = fxx/64 11 = external clock (tack) timer a operating mode selection bit: 00 = interval mode (taout mode) 01 = capture mode (capture on rising edge,         counter running, ovf can occur) 10 = capture mode (capture on falling edge,         counter running, ovf can occur) 11 = pwm mode (ovf interrupt and match         interrupt can occur) not used timer a overflow interrupt enable bit: 0 = disable overflow interrupt 1 = enable overflow interrrupt timer a counter clear bit: 0 = no effect 1 = clear the timer a counter ( when write ) note: when the counter clear bit(.3) is set, the 8-bit counter is cleared and it also is cleared automatically. pending bit of overflow and match/capture intterupt are located in tintpnd (e9, bank0) register.   figure 11-1. timer a control register (tacon) 

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-4     block diagram  notes: 1.   when pwm mode, match signal cannot clear counter. 2.   pending bit is located at tintpnd register. clear match tacon.7-.6 fxx/1024 fxx/256 fxx/64 tack tacon.2 pending tacon.3 overflow taovf tacap taout(tapwm) tintpnd.0 tacon.5.4 tacon.5.4 data bus 8 data bus 8 m u x m u x 8-bit up-counter (read only) 8-bit comparator timer a buffer reg timer a data register (read/write) m u x tacon.1 pending taint pg output signal tintpnd.1   figure 11-2. timer a functional block diagram 

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-5   8-bit timer b  overview  the s3c84bb/f84bb micro-controller has an 8-bit counter called timer b. timer b, which can be used to generate  the carrier frequency of a remote controller signal. pending bit of timer b is cleared automatically by hardware.  timer b has two functions:  ?  as a normal interval timer, generating a timer b interrupt at programmed time intervals.  ?  to generate a programmable carrier pulse for a remote control signal at p2.4.   block diagram  tbcon.6-.7 fxx/1 note: in case of setting tbcon.5-.4 at '10', the value of the tbdatal register is loaded into the 8-bit counter when the operation of the timer b starts. and then if a underflow occurs in the counter, the value of the tbdatah register is loaded with the value of the 8-bit counter. however, if the next borrow occurs, the value of the tbdatal register is loaded with the value of the 8-bit counter. to output tbpwm as carrier wave, you have to set p2conh.1-.0 as "11". m u x fxx/2 fxx/4 fxx/8 tbcon.2 clk 8-bit down counter mux timer b data low byte register timer b data high byte register repeat control tbcon.0 ff tbcon.4-.5 tbcon.3 pg output signal tb underflow (tbuf) tbpwm(p2.4) irq1 (tbint) tbcon.1 data bus 8 data bus 8   figure 11-3. timer b functional block diagram 

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-6     timer b control register (tbcon)  timer b control register (tbcon) d0h, set 1, bank 0, r/w lsb msb.7.6.5.4.3.2.1.0 timer b mode selection bit: 0 = one-shot mode 1 = repeating mode timer b input clock selection bit: 00 = fxx/1 01 = fxx/2 10 = fxx/4 11 = fxx/8 timer b interrupt time selection bit: 00 = elapsed time for low data value 01 = elapsed time for high data value 10 = elapsed time for low and high data value 11 = invaild setting timer b start/stop bit: 0 = stop timer b 1 = start timer b timer b interrupt enable bit: 0 = disable interrupt 1 = enable interrupt timer b output flip-flop  control bit: 0 = t-ff is low 1 = t-ff is high   figure 11-4. timer b control register (tbcon)  timer b data high-byte register (tbdatah) d1h, set 1, bank 0, r/w lsb msb.7.6.5.4.3.2.1.0 reset value: ffh timer b data low-byte register (tbdatal) d2h, set 1, bank 0, r/w lsb msb.7.6.5.4.3.2.1.0 reset value: ffh   figure 11-5. timer b data registers (tbdatah, tbdatal)   

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-7   timer b pulse width calculations       to generate the above repeated waveform consisted of low period time, t low , and high period time, t high .    when t-ff = 0,  t low  = (tbdatal + 1) x 1/fx, 0h < tbdatal < 100h, where fx = the selected clock.  t high  = (tbdatah + 1) x 1/fx, 0h < tbdatah < 100h, where fx = the selected clock.    when t-ff = 1,  t low  = (tbdatah + 1) x 1/fx, 0h < tbdatah < 100h, where fx = the selected clock.  t high  = (tbdatal + 1) x 1/fx, 0h < tbdatal < 100h, where fx = the selected clock.    to make t low   = 24 us and  t high  = 15 us.  f osc  = 4 mhz, fx = 4 mhz/4 = 1 mhz    when t-ff = 0,  t low  = 24 us = (tbdatal + 1) /fx = (tbdatal + 1) x 1us, tbdatal  = 23.  t high  = 15 us = (tbdatah + 1) /fx = (tbdatah + 1) x 1us, tbdatah = 14.    when t-ff = 1,  t high  = 15 us = (tbdatal + 1) /fx = (tbdatal + 1) x 1us, tbdatal  = 14.  t low  = 24 us = (tbdatah + 1) /fx = (tbdatah + 1) x 1us, tbdatah = 23.     

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-8     	
 
 
 
 

 
 

 
 
 

 

  

 

  
 
  	
    
      
   
 

 

 
 
 
 
 
 
 
 
   figure 11-6. timer b output flip-flop waveforms in repeat mode   

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-9           programming tip ? to generate 38 khz, 1/3duty signal through p2.4  this example sets timer b to the repeat mode, sets the oscillation frequency as the timer b clock source, and  tbdatah and tbdatal to make a 38 khz, 1/3 duty carrier frequency. the program parameters are:  17.59   s 37.9 khz 1/3 duty 8.795   s   ?  timer b is used in repeat mode  ?  oscillation frequency is 4 mhz (0.25    s)  ?  tbdatal = 8.795    s/0.25    s = 35.18, tbdatah = 17.59    s/0.25    s = 70.36  ?  set p2.4 to tbpwm mode.   org 0100h  ; reset address  start di    �    �    �    ld tbdatah,#(70-1) ; set 17.5    s   ld tbdatal,#(35-1) ; set 8.75    s    ld  tbcon,#00100111b  ;  clock source      fxx         ;  disable timer b interrupt.         ;  select repeat mode for timer b.        ;   start timer b operation.        ;   set timer b output flip-flop (t-ff) high.      ;    ld  p2conh,#03h  ;  set p2.4 to tbpwm mode.        ;  this command generates 38 khz, 1/3 duty pulse signal       through p2.4.      �      �     �    

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-10             programming tip ? to generate a one pulse signal through p2.4  this example sets timer b to the one shot mode, sets the oscillation frequency as the timer b clock source, and  tbdatah and tbdatal to make a 40  s width pulse. the program parameters are:       ?  timer b is used in one shot mode  ?  oscillation frequency is 4 mhz (1 clock = 0.25    s)  ?  tbdatah = 40    s / 0.25    s = 160, tbdatal = 1  ?  set p2.4 to tbpwm mode   org 0100h  ; reset address  start di    �   �   �     ld  tbdatah,# (160-1)  ;  set 40    s    ld  tbdatal,# 1  ;  set any value except  00h    ld  tbcon,#00010001b  ;  clock source      f osc         ;  disable timer b interrupt.         ;  select one shot mode for timer b.        ;   stop timer b operation.        ;   set timer b output flip-flop (t-ff) high    ld  p2conh, #03h  ;  set p2.4 to tbpwm mode.    �   �     pulse_out:  ld  tbcon,#00010101b  ;  start timer b operation          ;   to make the pulse at  this point.    �     ;  after the instruction is executed, 0.75   s is required   �     ;  before the falling edge of the pulse starts.    �         

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-11   8-bit timer c (0/1)  overview  the 8-bit timer   c (0/1) is an 8-bit general-purpose timer/counter. timer c (0/1) has two operating modes, you can  select one of them using the appropriate tccon0, and tccon1 setting:   ?  interval timer mode (toggle output at tcout0, tcout1 pin)  ?  pwm mode (tcout0, tcout1)  timer c (0/1) has the following functional components:  ?  clock frequency divider with multiplexer  ?  8-bit counter, 8-bit comparator, and 8-bit reference data register (tcdata0, tcdata1)  ?  pwm or match output (tcout0, tcout1)  ?  timer c (0) match/overflow interrupt (irq2, vector bch) generation  ?  timer c (1) match/overflow interrupt (irq2, vector beh) generation  ?  timer c (0) control register, tccon0 (set 1, bank1, f2h, read/write)  ?  timer c (1) control register, tccon1 (set 1, bank1, f3h, read/write) 

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-12     timer c (0/1) control register (tccon0, tccon1)  timer c control register (tccon0) f2h, set 1, bank 1, r/w, reset: 00h (tccon1) f3h, set 1, bank 1, r/w, reset: 00h lsb msb.7.6.5.4.3.2.1.0 timer c interrupt enable bit: 0 = disable interrupt 1 = enable inte rrrupt timer c 3-bits prescaler bits: 000 = non devided 001 = devided by 2 010 = devided by 3 011 = devided by 4 100 = devided by 5 101 = devided by 6 110 = devided by 7 111 = devided by 8 timer c mode selection bit: 0 = fx/1 & pwm mode 1 = fx/64 & interval mode timer c counter clear bit: 0 = no effect 1 = clear the timer a counter ( when write ) note:      when the counter clear bit(.3) is set, the 8-bit counter is cleared and                  it also is cleared automatically. timer c pending bit: 0 = no interrupt pending 1 = interrupt pending   figure 11-7. timer c (0/1) control register (tccon0, tccon1)     

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-13   block diagram  notes: 1.   when pwm mode, match signal cannot clear counter. clear match tccon.6-.4 fxx/1 fxx/64 tccon.1 pending tccon.3 overflow tcint tcout tccon.0 data bus 8 data bus 8 3-bit pre- scaler 8-bit up-counter (read only) 8-bit comparator timer c buffer reg timer c data register (read/write) tccon.1 pending tcint tccon.0 tccon.2 m u x tccon.2   figure 11-8. timer c (0/1) functional block diagram   

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-14          programming tip ? using the timer a   org 0000h   vector 0b8h,tamc_int   vector 0bah,taov_int   org 0100h  initial:    ld  sym,#00h  ;  disable global/fast interrupt    sym    ld  imr,#00000001b  ;  enable irq0 interrupt     ld  sph,#00000000b  ;  set stack area   ld spl,#0ffh    ld  btcon,#10100011b  ;  disable watch-dog    ld tadata,#80h    ld  tacon,#01001010b  ;  match interrupt enable        ;  3.30 ms duration (10 mhz x?tal)     ei  main:    ?     ?     main routine    ?     ?       jr t,main  tamc_int:    ?     ?      interrupt service routine    ?     ?    iret  taov_int:     ?      interrupt service routine    ?     ?    iret     .end   

 s3c84bb/f84bb    8-bit timer  a/b/c(0/1)     11-15        programming tip ? using the timer b   org 0000h   vector 0c8h,tbun_int   org 0100h  initial:    ld  sym,#00h  ;  disable global/fast interrupt     ld  imr,#00000010b  ;  enable irq1 interrupt     ld  sph,#00000000b  ;  set stack area   ld spl,#0ffh    ld  btcon,#10100011b  ;  disable watch-dog     ld  p2conh,#00000011b  ;  enable tbpwm output      ld tbdatah,#80h   ld tbdatal,#80h    ld  tbcon,#11101110b  ;  enable interrupt, repeating, fxx/8      ; duration 206   s (10 mhz x?tal)      ei  main:    ?     ?     ?     main routine    ?     ?     ?       jr t, main  tbun_int:    ?     ?     ?      interrupt service routine    ?     ?     ?    iret     .end 

 8-bit timer a/b/c(0/1)    s3c84bb/f84bb  11-16          programming tip ? using the timer c(0)   org 0000h   vector 0bch, tcun_int   org 0100h  initial:    ld  sym,#00h  ;  disable global/fast interrupt     ld  imr,#00000100b  ;  enable irq2 interrupt     ld  sph,#00000000b  ;  set stack area   ld spl,#11111111b    ld  btcon,#10100011b  ;  disable watch-dog, high speed    ld  p3conh,#00110000b  ;  enable tcout0 output      ld tcdata0,#80h    ld  tccon0,#00001110b  ;  non-divide, interval, enable interrupt         ;  duration 0.825ms (10 mhz x?tal)      ei  main:    ?     ?     ?     main routine    ?     ?     ?       jr t, main  tcun_int:    ?     ?     ?      interrupt service routine    ?     ?     ?    iret     .end   

 s3c84bb/f84bb    16-bit timer 1(0/1)     12-1     16-bit timer 1(0/1)   overview  the s3c84bb/f84bb has two 16-bit timer/counters. the 16-bit timer 1(0/1) is a 16-bit general-purpose  timer/counter. timer 1(0/1) has three operating modes, one of which you select using the appropriate t1con0,  t1con1 setting is:   ?  interval timer mode (toggle output at t1out0, t1out1 pin)  ?  capture input mode with a rising or falling edge trigger at the t1cap0, t1cap1 pin  ?  pwm mode (t1pwm0, t1pwm1); pwm output shares their output port with t1out0, t1out1 pin  timer 1(0/1) has the following functional components:  ?  clock frequency divider (fxx divided by 1024, 256, 64, 8, or 1) with multiplexer  ?  external clock input pin (t1ck0, t1ck1)  ?  a 16-bit counter (t1cnth0/l0, t1cnth1/l1), 16-bit comparator, and two 16-bit reference data register  (t1datah0/l0, t1datah1/l1)  ?  i/o pins for capture input (t1cap0, t1cap1), or match output (t1out0, t1out1)  ?  timer 1(0) overflow interrupt (irq3, vector c2h) and match/capture interrupt (irq3, vector c0h) generation  ?  timer 1(1) overflow interrupt (irq3, vector c6h) and match/capture interrupt (irq3, vector c4h) generation  ?  timer 1(0) control register, t1con0 (set 1, eah, bank 1, read/write)  ?  timer 1(1) control register, t1con1 (set 1, ebh, bank 1, read/write) 

 16-bit timer 1(0/1)    s3c84bb/f84bb   12-2     function description  timer 1 (0/1) interrupts (irq3, vectors c6h, c4h, c2h and c0h)  the timer 1(0) module can generate two interrupts, the timer 1(0) overflow interrupt (t1ovf0), and the timer 1(0)  match/capture interrupt (t1int0). t1ovf0 is interrupt level irq3, vector c2h. t1int0 also belongs to interrupt  level irq3, but is assigned the separate vector address, c0h.  a timer 1(0) overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.  a timer 1(0) match/capture interrupt, t1int0 pending condition is also cleared by hardware when it has been  serviced.  the timer 1(1) module can generate two interrupts, the timer 1(1) overflow interrupt (t1ovf1), and the timer 1(1)  match/capture interrupt (t1int1). t1ovf1 is interrupt level irq3, vector c6h. t1int1 also belongs to interrupt  level irq3, but is assigned the separate vector address, c4h.  a timer 1(1) overflow interrupt pending condition is automatically cleared by hardware when it has been serviced.  a timer 1(1) match/capture interrupt, t1int1 pending condition is also cleared by hardware when it has been  serviced.  interval mode (match)  the timer 1(0) module can generate an interrupt: the timer 1(0) match interrupt (t1int0). t1int0 belongs to  interrupt level irq3, and is assigned the separate vector address, c0h.  in interval timer mode, a match signal is generated and t1out0 is toggled when the counter value is identical to  the value written to the t1 reference data register, t1datah0/l0. the match signal generates a timer 1(0) match  interrupt (t1int0, vector c0h) and clears the counter.  the timer 1(1) module can generate an interrupt: the timer 1(1) match interrupt (t1int1). t1int1 belongs to  interrupt level irq3, and is assigned the separate vector address, c4h.  in interval timer mode, a match signal is generated and t1out1 is toggled when the counter value is identical to  the value written to the t1 reference data register, t1datah1/l1. the match signal generates a timer 1(1) match  interrupt (t1int1, vector c4h) and clears the counter.  capture mode  in capture mode for timer 1(0), a signal edge that is detected at the t1cap0 pin opens a gate and loads the  current counter value into the t1 data register (t1datah0/l0 for rising edge, or falling edge). you can select  rising or falling edges to trigger this operation.  timer 1(0) also gives you capture input source, the signal edge at the t1cap0 pin. you select the capture input by  setting the capture input selection bit in the port 3 control register, p3conl, (set 1 bank 0, f5h).   both kinds of timer 1(0) interrupts (t1ovf0, t1int0) can be used in capture mode, the timer 1(0) overflow  interrupt is generated whenever a counter overflow occurs, the timer 1(0) capture interrupt is generated whenever  the counter value is loaded into the t1 data register (t1datah0/l0).  by reading the captured data value in t1datah0/l0, and assuming a specific value for the timer 1(0) clock  frequency, you can calculate the pulse width (duration) of the signal that is being input at the t1cap0 pin.  in capture mode for timer 1(1), a signal edge that is detected at the t1cap1 pin opens a gate and loads the  current counter value into the t1 data register (t1datah1/l1 for rising edge, or falling edge). you can select  rising or falling edges to trigger this operation.  timer 1(1) also gives you capture input source, the signal edge at the t1cap1 pin. you select the capture input by  setting the capture input selection bit in the port 3 control register, p3conl, (set 1 bank 0, f5h).   both kinds of timer 1(1) interrupts (t1ovf1, t1int1) can be used in capture mode, the timer 1(1) overflow  interrupt is generated whenever a counter overflow occurs, the timer 1(1) capture interrupt is generated whenever  the counter value is loaded into the t1 data register.  by reading the captured data value in t1datah1/l1, and assuming a specific value for the timer 1(1) clock  frequency, you can calculate the pulse width (duration) of the signal that is being input at the t1cap1 pin. 

 s3c84bb/f84bb    16-bit timer 1(0/1)     12-3   pwm mode  pulse width modulation (pwm) mode lets you program the width (duration) of the pulse that is output at the  t1out0, t1out1 pin. as in interval timer mode, a match signal is generated when the counter value is identical  to the value written to the timer 1(0/1) data register. in pwm mode, however, the match signal does not clear the  counter but can generate a match interrupt. the counter runs continuously, overflowing at ffffh, and then  continuous increasing from 0000h. whenever an overflow is occurred, an overflow (ovf0,1) interrupt can be  generated.  although you can use the match or the overflow interrupt in the pwm mode, these interrupts are not typically used  in pwm-type applications. instead, the pulse at the t1out0, t1out1 pin is held to low level as long as the  reference data value is less than or equal to(  ) the counter value and then the pulse is held to high level for as  long as the data value is greater than( > ) the counter value. one pulse width is equal to t clk  .     timer 1(0/1) control register (t1con0, t1con1)  you use the timer 1(0/1) control register, t1con0, t1con1, to  ?  select the timer 1(0/1) operating mode (interval timer, capture mode, or pwm mode)  ?  select the timer 1(0/1) input clock frequency  ?  clear the timer 1(0/1) counter, t1cnth0/l0, t1cnth1/l1  ?  enable the timer 1(0/1) overflow interrupt   ?  enable the timer 1(0/1) match/capture interrupt  t1con0 is located in set 1 and bank 1 at address eah, and is read/write addressable using register addressing  mode. t1con1 is located in set 1 and bank 1 at address ebh, and is read/write addressable using register  addressing mode.   a reset clears t1con0, t1con1 to ?00h?. this sets timer 1(0/1) to normal interval timer mode, selects an input  clock frequency of fxx/1024, and disables all timer 1(0/1) interrupts. to disable the counter operation, please set   t1con(0/1).7-.5 to 111b. you can clear the timer 1(0/1) counter at any time during normal operation by writing a  ?1? to t1con(0/1).3. to generate the exact time interval, you should write ?1? to t1con(0/1).2  and clear  appropriate pending bits of the tintpnd register.  to detect a match/capture or overflow interrupt pending condition when t1int0, t1int1 or t1ovf0, t1ovf1 is  disabled, the application program should poll the pending bit tintpnd register, bank 0, e9h. when a ?1? is  detected, a timer 1(0/1) match/capture or overflow interrupt is pending.  when the sub-routine has been serviced, the pending condition must be cleared by software by writing a ?0? to the  interrupt pending bit. if interrupts (match/capture or overflow) are enabled, the pending bit is cleared automatically  by hardware.   

 16-bit timer 1(0/1)    s3c84bb/f84bb   12-4     note: interrupt pending bits are located in tintpnd register. timer 1 control register (t1con0) eah, set 1, bank 1, r/w (t1con1) ebh, set 1, bank 1, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 timer 1 overflow interrupt enable bit: 0 = disable overflow interrupt 1 = enable overflow interrrupt timer 1 clock source selection bit: 000 = fxx/1024 001 = fxx 010 = fxx/256 011 = external clock(t1ck) falling edge 100 = fxx/64 101 = external clock(t1ck) rising edge 110 = fxx/8 111 = counter stop timer 1 operating mode selection bit: 00 = interval mode 01 = capture mode (capture on rising edge, ovf can occur) 10 = capture mode (capture on falling edge, ovf can occur) 11 = pwm mode (ovf and t1int can occur) timer 1 match/capture interrupt enable bit: 0 = disable interrupt 1 = enable interrrupt timer 1 counter clear bit: 0 = no effect 1 = clear counter (auto-clear bit)   figure 12-1. timer 1(0/1) control register (t1con0, t1con1) 

 s3c84bb/f84bb    16-bit timer 1(0/1)     12-5   timer a,1 pending register (tintpnd) e9h, set 1, bank 0, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 timer a overflow interrupt pending bit: not used timer a match/capture interrup t pending bit: 0 = no interrupt pending 1 = interrrupt pending timer 1(0) overflow interrupt pending bit: timer 1(0) match/capture interrupt pending bit: timer 1(1) overflow interrupt pendig bit: 0 = no interrupt pending 1 = interrupt pending timer 1(1) match/capture interrupt pending bit: 0 = no interrupt pending 1 = interrupt pending 0 = no interrupt pending 1 = interrupt pending 0 = no interrupt pending 1 = interrupt pending 0 = no interrupt pending 1 = interrupt pending 	
	

	


   figure 12-2. timer a and timer 1(0/1) pending register (tintpnd) 

 16-bit timer 1(0/1)    s3c84bb/f84bb   12-6     block diagram  fxx/1 fxx/64 fxx/8 v ss t1ck fxx/256 fxx/1024 notes: 1.   when pwm mode, match signal cannot clear counter. 2.   pending bit is located at tintpnd register. clear match t1con.7-.5 t1con.0 pending t1con.2 overflow t1ovf t1cap t1out t1pwm tintpnd t1con.4.3 t1con.4.3 data bus 8 data bus 8 m u x m u x 16-bit up-counter (read only) 16-bit comparator 16-bit timer buffer 16-bit timer data register (t1datah/l) m u x t1con.1 pending t1int pg output signal tintpnd   figure 12-3. timer 1(0/1) functional block diagram 

 s3c84bb/f84bb    16-bit timer 1(0/1)     12-7        programming tip ? using the timer 1(0)   org 0000h   vector 0e4h,t1mc_int   org 0100h  initial:    ld  sym,#00h  ;  disable global/fast interrupt     ld  imr,#00001000b  ;  enable irq3 interrupt     ld  sph,#00000000b  ;  set stack area   ld spl,#11111111b    ld  btcon,#10100011b  ;  disable watch-dog    sb1   ldw t1datah0,#0f0h     ld  t1con0,#01000110b  ;  fxx/256, interval, clear counter, enable interrupt         ;  duration 6.17ms (10 mhz x?tal)   sb0     ei  main:    ?     ?     ?     main routine    ?     ?     ?       jr t,main  t1mc_int:    ?     ?     ?      interrupt service routine    ?     ?     ?    iret     .end   

 16-bit timer 1(0/1)    s3c84bb/f84bb   12-8     notes     

 s3c84bb/f84bb    serial i/o port     13-1     serial i/o port   overview  serial i/o module, sio can interface with various types of external devices that require serial data transfer.  sio has the following functional components:  ?  sio data receive/transmit interrupt (irq4, vector cah) generation  ?  8-bit control register, siocon (set 1, bank 1, e1h, read/write)  ?  clock selection logic  ?  8-bit data buffer, siodata  ?  8-bit prescaler (siops), (set 1, bank 1, f4h, read/write)  ?  3-bit serial clock counter  ?  serial data i/o pins (p2.0?p2.1, so, si)  ?  external clock input/output pin (p2.2, sck)  the sio module can transmit or receive 8-bit serial data at a frequency determined by its corresponding control  register settings. to ensure flexible data transmission rates, you can select an internal or external clock source.  programming procedure  to program the sio modules, follow these basic steps:  1.  configure p2.1, p2.0 and p2.2 to alternative function (si, so, sck) for interfacing sio module by setting the  p2conl register to appropriately value.  2.  load an 8-bit value to the siocon control register to properly configure the serial i/o module. in this  operation, siocon.2 must be set to "1" to enable the data shifter.  3.  for interrupt generation, set the serial i/o interrupt enable bit, siocon.1 to "1".  4.  to transmit data to the serial buffer, write data to siodata and set siocon.3 to 1, then the shift operation  starts.  5.  when the shift operation (transmit/receive) is completed, the sio pending bit (siocon.0) is set to "1" and an  sio interrupt request is generated. 

 serial i/o port    s3c84bb/f84bb)  13-2     sio control register (siocon)  the control register for the serial i/o interface module, siocon, is located in set 1, bank 1 at address e1h. it has  the control settings for sio module.  ?  clock source selection (internal or external) for shift clock  ?  interrupt enable   ?  edge selection for shift operation  ?  clear 3-bit counter and start shift operation   ?  shift operation (transmit) enable  ?  mode selection (transmit/receive or receive-only)  ?  data direction selection (msb first or lsb first)  a reset clears the siocon value to '00h'. this configures the corresponding module with an internal clock source,  p.s clock at the sck, selects receive-only operating mode, the data shift operation and the interrupt are disabled,  and the data direction is selected to msb-first.  so, if you want to use sio module, you must write appropriate value to siocon.  serial i/o module control registers (siocon) e1h, set 1, bank 1, r/w .7 .6 .5 .4 .3 .2 .1 .0 msb lsb sio interrupt enable bit: 0 = disable sio interrupt 1 = enable sio interrupt sio interrupt pending bit: 0 = no interrupt pending 0 = clear pending condition       (when write) 1  =  interrupt is pending sio shift operation enable bit: 0 = disable shifter and clock counter 1 = enable shifter and clock counter shift clock edge selection bit: 0 = t x  at falling edeges, r x  at rising edges 1 = t x  at rising edeges, r x  at falling edges data direction control bit: 0 = msb-first mode 1 = lsb-first mode sio mode selection bit: 0 = receive-only mode 1 = transmit/receive mode sio counter clear and shift start bit: 0 = no action 1 = clear 3-bit counter and start shifting sio shift clock selection bit: 0 = internal clock (p.s clock) 1 = external clock (sck)   figure 13-1. sio module control register (siocon)   

 s3c84bb/f84bb    serial i/o port     13-3   sio prescaler register (siops)  the control register for the serial i/o interface module, siops, is located in set 1, bank 1, at address f4h.   the value stored in the sio prescaler registers, siops, lets you determine the sio clock rate (baud rate) as  follows:  baud rate  = input clock (fxx)/[(siops value + 1) x 2] or sck input clock  sio pre-scaler register (siops) f4h, set 1, bank 1, r/w .7 .6 .5 .4 .3 .2 .1 .0 msb lsb siops data value baud rate = input clock (fxx)/[(siops + 1) x 2] or sclk input cloc k   figure 13-2. sio prescaler register (siops)  block diagram  sio int pending 3-bit counter clear siocon.0 8-bit sio shift buffer (siodata) fxx siops sck(p2.2) siocon.7 (shift clock source select) prescaled value = 1/(siops +1) clk siocon.1 (interrupt enable) clk si (p2.1) siocon.3 siocon.4 (shift clock edge select) siocon.5 (mode select) siocon.2 (shift enable) siocon.6 (lsb/msb first mode select) data bus 8 so (p2.0) m u x 1/2 8-bit p.s. irq4   figure 13-3. sio functional block diagram 

 serial i/o port    s3c84bb/f84bb)  13-4     serial i/o timing diagrams  so (data output) si (data input) shift clock transmit complete irq4 set siocon.3 d7 d6 d5 d4 d3 d2 d1 d0 d7 d6 d5 d4 d3 d2 d1 d0   figure 13-4. sio timing in transmit/receive mode (tx at falling edge, siocon.4=0)  so (data output) si (data input) shift clock transmit complete irq4 set siocon.3 d7 d6 d5 d4 d3 d2 d1 d0 d7 d6 d5 d4 d3 d2 d1 d0   figure 13-5. sio timing in transmit/receive mode (tx at rising edge, siocon.4=1)   

 s3c84bb/f84bb    serial i/o port     13-5   so si shift clock transmit complete irq4 set siocon.3 d7 d6 d5 d4 d3 d2 d1 d0 high impedance   figure 13-6 .  sio timing in receive-only mode (rising edge start)          programming tip ? use internal clock to transmit and receive serial data  1. the method that uses interrupt is used.    ?     ?     di    ;  disable all interrupts    ld  p2conl #03h  ;  p2.2?p2.0 are selected to alternative function for                                                                             ;   si, so, sck, respectively                         sb1    ld  siodata, tdata  ;  load data to sio buffer    ld  siops, #90h  ;  baud rate = input clock(fxx)/[(144 + 1) x 2]    ld  siocon, #2eh  ;  internal clock, msb first, transmit/receive mode    sb0    ;  select tx falling edges to start shift operation        ;  clear 3-bit counter and start shifting        ;  enable shifter and clock counter        ;  enable sio interrupt and clear pending   ei        ?         ?            ?   sioint push  rp0  ;    srp0 #rdata  ;    sb1    ld  r0,siodata  ;  load received data to general register   or siocon,#08h ; sio restart                        and  siocon,#11111110b  ;   clear interrupt pending bit   pop rp0   iret 

 serial i/o port    s3c84bb/f84bb)  13-6             programming tip ? use internal clock to transfer and receive serial data (continued)  2. the method that uses software pending check is used.    ?     ?     ?     di    ;  disable all interrupts      sb1    ld  siodata, tdata  ;  load data to sio buffer    ld  siops, #90h  ;  baud rate = input clock(fxx)/[(144 + 1)    2]    ld  siocon, #2ch  ;  internal clock, msb first, transmit/receive mode        ;  select falling edges to start shift operation        ;  clear 3-bit counter and start shifting        ;  disable sio interrupt and pending clear   ei      siotest:  ld  r6,siocon  ;  to check whether transmit and receive is finished    btjrf  siotest,r6.0  ;  check pending bit    nop    and  siocon,#0feh  ;  pending clear by software    ld  rdata,siodata  ;  load received data to rdata    ?     ?     ?    sb0    ?     ?     ?                                    

 s3c84bb/f84bb   uart(0/1)     14-1   14   uart(0/1)  overview  the uart block has a full-duplex serial port with  programmable operating modes: there is one synchronous  mode and three uart (universal asyn chronous receiver/transmitter) modes:  ?  serial i/o with baud rate of fxx/(16    (brdata+1))  ?  8-bit uart mode; variable baud rate  ?  9-bit uart mode; fxx/16  ?  9-bit uart mode, variable baud rate  uart receive and transmit buffers are both accessed via t he data register, udata0, is set 1, bank 1 at address  e2h, udata1, is set 1, bank 1 at  address fah. writing to the uart data  register loads the transmit buffer;  reading the uart data register accesses  a physically separate receive buffer.  when accessing a receive data buffer (shift register), rec eption of the next byte can  begin before the previously  received byte has been read from the receive register. howeve r, if the first byte has not been read by the time the  next byte has been completely received,  the first data byte will be lost.   in all operating modes, transmission is started when any inst ruction (usually a write oper ation) uses the udata0,  udata1 register as its destination addre ss. in mode 0, serial data recepti on starts when the receive interrupt  pending bit (uartpnd.1, uartpnd.3) is "0" and the receiv e enable bit (uartcon0.4, uartcon1.4) is "1". in  mode 1, 2, and 3, reception starts whenever an incomi ng start bit ("0") is received and the receive enable bit  (uartcon0.4, uartcon1.4) is set to "1".  programming procedure  to program the uart0 modules, follow these basic steps:  1.  configure p5.3 and p5.2 to alternative function  rxd0, txd0 for uart0 module by setting the p5conl  register to appropriatly value.  2.  load an 8-bit value to the uartcon0 control regist er to properly configure the uart0 i/o module.   3.  for interrupt generation, set the uart0 interrupt  enable bit (uartcon0.1 or uartcon0.0) to "1".  4.  when you transmit data to the uart0 buffer, wr iting data to udata0, the shift operation starts.  5.  when the shift operation (transmit/receive) is comp leted, uart0 pending bit (uar tpnd.1 or uartpnd.0) is  set to "1" and an uart0 interrupt request is generated.   

 uart(0/1)  s3c84bb/f84bb   14-2     uart control register (uartcon0, uartcon1)  the control register for the uart is called uartcon0  in set 1, bank 1 at address e3h, uartcon1 in set 1,  bank 1 at address fbh. it has the following control functions:  ?  operating mode and baud rate selection  ?  multiprocessor communication and interrupt control  ?  serial receive enable/disable control  ?  9th data bit location for transmit and receive operations (modes 2 and 3 only)  ?  uart transmit and receive interrupt control  a reset clears the uartcon0, uartcon1 value to "00h".  so, if you want to use uart0, or uart1 module,  you must write appropriate value to uartcon0, uartcon1.  uart control register (uartcon0) e3h, set 1, bank 1,  r/w (uartcon1) fbh, set 1, bank 1,  r/w ms1 msb lsb received interrupt enable bit: 0 = disable 1 = enable transmit interrupt enable bit: 0 = disable 1 = enable location of the 9th data bit that was received in uart mode 2 or 3 ("0" or "1") serial data receive enable bit: 0 = disable 1 = enable multiprocessor communication (1) enable bit (for modes 2 and 3 only): 0 = disable 1 = enable location of the 9th data bit to be transmitted in uart mode 2 or 3 ("0" or "1") operating mode and baud rate selection bits (see table below) ms0 mce re tb8 rb8 rie tie ms1 ms0 0 0 1 1 0 1 0 1 mode   description (2)    baud rate 0 1 2 3 shift register 8-bit uart 9-bit uart 9-bit uart fxx/(16 x (brdata + 1)) fxx/(16 x (brdata + 1)) fxx/16 fxx/(16 x (brdata + 1)) notes: 1.    in mode 2 or 3, if the uartcon.5 bit is set to "1" then the receive interrupt will not be        activated if the received 9th data bit is "0". in mode 1, if uartcon.5 = "1" then the        receive interrut will not be activated if a valid stop bit was not received.        in mode 0, the uartcon.5 bit should be "0" 2.   the descriptions for 8-bit and 9-bit uart mode do not include start and stop bits        for serial data receive and transmit.   figure 14-1. uart control register (uartcon0, uartcon1) 

 s3c84bb/f84bb   uart(0/1)     14-3   uart interrupt pending register (uartpnd)  the uart interrupt pending register, uartpnd is located  in set 1, bank 1 at address e5h, it contains the  uart0 data transmit interrupt pending bit (uartpnd.0),  the receive interrupt pending bit (uartpnd.1), the  uart1 data transmit interrupt pending bit (uartpnd.2) , and the receive interrupt pending bit (uartpnd.3).  in mode 0, the receive interrupt pendi ng flag uartpnd.1, uartpnd.3 is set  to "1" when the 8th receive data bit  has been shifted. in mode 1, 2, and 3,  the uartpnd.1, uartpnd.3 bit is set  to "1" at the halfway point of the  stop bit's shift time. when the cpu has acknowledged t he receive interrupt pending c ondition, the uartpnd.1,  uartpnd.3 flag must then be cleared by softw are in the interrupt service routine.  in mode 0, the transmit interrupt pending flag uartpnd.0,  uartpnd.2 is set to "1" when the 8th transmit data  bit has been shifted. in mode 1, 2, or 3, the uartpnd.0,  uartpnd.2 bit is set at t he start of the stop bit. when  the cpu has acknowledged the transmit interrupt pending  condition, the uartpnd.0,  uartpnd.2 flag must  then be cleared by software in t he interrupt service routine.  uart pending register (uartpnd)  e5h, set 1, bank 1,  r/w - msb lsb uart0 receive interrupt pending flag: 0 = not pending 0 = clear pending bit (when write) 1 = interrupt pending uart0 transmit interrupt pending flag: 0 = not pending 0 = clear pending bit (when write) 1 = interrupt pending not used --- rip1 tip1 rip0 tip0 notes: 1.    in order to clear a data transmit or receive interrupt pending        flag, you must write a "0" to the appropriate pending bit. 2.   to avoid errors, we recommend using load instruction      (except for ldb), when manipulating uartpnd values. uart1 transmit interrupt pending flag: 0 = not pending 0 = clear pending bit (when write) 1 = interrupt pending uart1 receive interrupt pending flag: 0 = not pending 0 = clear pending bit (when write) 1 = interrupt pending   figure 14-2. uart interrupt pending register (uartpnd) 

 uart(0/1)  s3c84bb/f84bb   14-4       uart data register (udata0, udata1)  uart data register (udata0) e2h, set 1, bank 1, r/w (udata1) fah, set 1, bank 1, r/w .7 msb lsb transmit or receive data .6 .5 .4 .3 .2 .1 .0   figure 14-3. uart data register (udata0, udata1)  uart baud rate data register (brdata0, brdata1)  the value stored in the uart0 baud rate register, brda ta0, lets you determine the uart0 clock rate (baud  rate). the value stored in the uart1 baud rate register , brdata1, lets you deter mine the uart1 clock rate  (baud rate).  uart baud rate data register (brdata0) e4h, set 1, bank 1, r/w (brdata1) fch, set 1, bank 1, r/w .7 msb lsb baud rate data .6 .5 .4 .3 .2 .1 .0   figure 14-4. uart baud rate data register (brdata0, brdata1)  baud rate calculations (uart0)  mode 0 baud rate calculation  in mode 0, the baud rate is determined by the uart0  baud rate data register, brdata0 in set1, bank 1 at  address e4h.  mode 0 baud rate  = fxx/(16    (brdata0 + 1))  mode 2 baud rate calculation  the baud rate in mode 2 is fixed at the f osc  clock frequency divided by 16:     mode 2 baud rate  = fxx/16  modes 1 and 3 baud rate calculation  in modes 1 and 3, the baud rate is determined by the ua rt0 baud rate data register, brdata0 in set 1, bank 1  at address e4h.   mode 1 and 3 baud rate  = fxx/(16    (brdata0 + 1)) 

 s3c84bb/f84bb   uart(0/1)     14-5     table 14-1. commonly used baud rates generated by brdata0, brdata1  mode  baud rate  oscillation clock  brdata0, brdata1        decimal   hexdecimal   mode 2  0.5 mhz  8 mhz  x  x  mode 0  230,400 hz  11.0592 mhz  02  02h  mode 1  115,200 hz  11.0592 mhz  05  05h  mode 3  57,600 hz  11.0592 mhz  11  0bh    38,400 hz  11.0592 mhz  17  11h    19,200 hz  11.0592 mhz  35  23h    9,600 hz  11.0592 mhz  71  47h    4,800 hz  11.0592 mhz  143  8fh    62,500 hz  10 mhz  09  09h    9,615 hz  10 mhz  64  40h    38,461 hz  8 mhz  12  0ch    12,500 hz  8 mhz  39  27h    19,230 hz  4 mhz  12  0ch    9,615 hz  4 mhz  25  19h     

 uart(0/1)  s3c84bb/f84bb   14-6     block diagram  zero detector uartdata rxd0 (p5.3 ) rxd1 (p5.1 ) tie rie irq7 interrupt 1-to-0 transition detector re rie bit detector shift value ms0 ms1 ms0 ms1 rxd0 (p5.3) rxd1 (p5.1) sam8 internal data bus write to uartdata baud rate generator s dq clk tb8 clk tx control start tx clock tip shift en send rx control rx clock start rip receive shift shift clock ms0 ms1 fxx sam8 internal data bus shift register uartdata brdata txd0 (p5.2) txd1 (p5.0) txd0 (p5.2) txd1 (p5.0)   figure 14-5. uart functional block diagram    

 s3c84bb/f84bb   uart(0/1)     14-7   uart0 mode 0 function description  in mode 0, uart0 is input and output through the rxd0 (p 5.3) pin and txd0 (p5.2) pi n outputs the shift clock.  data is transmitted or received in 8-bi t units only. the lsb of the 8-bit va lue is transmitted (or received) first.  mode 0 transmit procedure  1.  select mode 0 by setting uartcon0.6 and .7 to "00b".   2.  write transmission data to the shift register udata0 (e 2h, set 1, bank 1) to start the transmission operation.  mode 0 receive procedure  1.  select mode 0 by setting uatcon0.6 and .7 to "00b".  2.  clear the receive interrupt pending bit (uar tpnd.1) by writing a "0" to uartpnd.1.  3.   set the uart0 receive enable bit (uartcon0.4) to "1".  4.  the shift clock will now be output to the txd0 (p5. 2) pin and will read the data at the rxd0 (p5.3) pin. a  uart0 receive interrupt (irq7, vector f0h)  occurs when uartcon0.1 is set to "1".  transmit d0 d1 d2 d3 d4 d5 d6 d7 write to shift register (udata) rxd (data out) txd (shift clock) tip shift receive write to uartpnd (clear rip and set re) shift d0 d1 d2 d3 d4 d5 d6 d7 txd (shift clock) rxd (data in) re rip 12345678   figure 14-6. timing diagram for uart mode 0 operation 

 uart(0/1)  s3c84bb/f84bb   14-8     uart0 mode 1 function description  in mode 1, 10-bits are transmitted through the txd0 pin  or received through the rxd0 pin. each data frame has  three components:  ?  start bit ("0")  ?  8 data bits (lsb first)  ?  stop bit ("1")  when receiving, the stop bit is written to the rb8 bit  in the uartcon0 register. the baud rate for mode 1 is  variable.  mode 1 transmit procedure  1.  select the baud rate gener ated by setting brdata0.  2.  select mode 1 (8-bit uart0) by se tting uartcon0 bits 7 and 6 to '01b'.   3.  write transmission data to the shift register udata 0 (e2h, set 1, bank 1). the start and stop bits are  generated automatically by hardware.  mode 1 receive procedure  1.  select the baud rate to  be generated by setting brdata0.  2.  select mode 1 and set the re (receive enabl e) bit in the uartcon0 register to "1".  3.  the start bit low ("0") condition at  the rxd0 (p5.3) pin will cause the  uart0 module to start the serial data  receive operation.  transmit tip write to shift register (udata) start bit txd stop bit d0 d1 d2 d3 d4 d5 d6 d7 shift tx clock receive rip start bit rx clock stop bit rxd d0 d1 d2 d3 d4 d5 d6 d7 bit detect sample time shift   figure 14-7. timing diagram for uart mode 1 operation 

 s3c84bb/f84bb   uart(0/1)     14-9   uart0 mode 2 function description  in mode 2, 11-bits are transmitted (through the txd0 pin)  or received (through the rxd0 pin). each data frame  has four components:  ?  start bit ("0")  ?  8 data bits (lsb first)  ?  programmable 9th data bit  ?  stop bit ("1")   the 9th data bit to be transmitted can be assigned a value of  "0" or "1" by writing the tb8 bit (uartcon0.3).   when receiving, the 9th data bit that  is received is written to the rb8 bi t (uartcon0.2), while the stop bit is  ignored. the baud rate for mode 2 is fosc/16 clock frequency.  mode 2 transmit procedure  1.  select mode 2 (9-bit uart0) by setting uartcon0 bi ts 6 and 7 to '10b'. also, select the 9th data bit to be  transmitted by writing tb8 to "0" or "1".  2.  write transmission data to the shift register, udata0  (e2h, set 1, bank 1), to st art the transmit operation.  mode 2 receive procedure  1.  select mode 2 and set the receive enable bit  (re) in the uartcon0 register to "1".  2.  the receive operation starts when the si gnal at the rxd pin goes to low level.  transmit tip write to shift register (uartdata) start bit txd stop bit d0 d1 d2 d3 d4 d5 d6 d7 shift tx clock receive rip start bit rx clock stop bit rxd d0 d1 d2 d3 d4 d5 d6 d7 bit detect sample time shift tb8 rb8   figure 14-8. timing diagram for uart mode 2 operation 

 uart(0/1)  s3c84bb/f84bb   14-10     uart0 mode 3 function description  in mode 3, 11-bits are transmitted (through the txd0) or  received (through the rxd0). mode 3 is identical to  mode 2 except for baud rate, which is variabl e. each data frame has four components:  ?  start bit ("0")  ?  8 data bits (lsb first)  ?  programmable 9th data bit  ?  stop bit ("1")  mode 3 transmit procedure  1.  select the baud rate gener ated by setting brdata0.  2.  select mode 3 operation (9-bit uart 0) by setting uartcon0 bits 6 and 7  to '11b'. also, select the 9th data  bit to be transmitted by writing uartcon0.3 (tb8) to "0" or "1".  3.  write transmission data to the shift register, udata0  (e2h, set 1, bank 1), to st art the transmit operation.  mode 3 receive procedure  1.  select the baud rate to  be generated by setting brdata0.  2.  select mode 3 and set the re (receive enabl e) bit in the uartcon0 register to "1".  3.  the receive operation will be started when the  signal at the rxd0 pin goes to low level.  transmit tip write to shift register (uartdata) start bit txd stop bit d0 d1 d2 d3 d4 d5 d6 d7 shift tx clock receive rip start bit rx clock stop bit rxd d0 d1 d2 d3 d4 d5 d6 d7 bit detect sample time shift tb8 rb8   figure 14-9. timing diagram for uart mode 3 operation 

 s3c84bb/f84bb   uart(0/1)     14-11   serial communication for multiprocessor configurations  the s3c8-series multiprocessor communication feature  lets a "master" s3c84bb/ S3F84BB send a multiple- frame serial message to a "slave" device in a multi- s3c84bb/f84bb configurati on. it does this without  interrupting other slave devices that  may be on the same serial line.   this feature can be used only in uart modes 2 or 3. in  these modes 2 and 3, 9 data bits are received. the 9th  bit value is written to rb8 (uartcon0.2, or uartcon1 .2). the data receive operation is concluded with a stop  bit. you can program this function so that when the stop  bit is received, the serial interrupt will be generated only  if rb8 = "1".   to enable this feature, you set the mce bit in the uart con0/1 register. when the mce bit is "1", serial data  frames that are received with the 9th bit = "0" do not  generate an interrupt. in this case, the 9th bit simply  separates the address from the serial data.  sample protocol for master/slave interaction  when the master device wants to transmit a block of data to  one of several slaves on a serial line, it first sends  out an address byte to identify the target  slave. note that in this case, an addr ess byte differs from a data byte: in  an address byte, the 9th bit is "1" and in a data byte, it is "0".   the address byte interrupts all slaves so that each slav e can examine the received byte and see if it is being  addressed. the addressed slave then clears its mce bi t and prepares to receive incoming data bytes.   the mce bits of slaves that were not addressed rema in set, and they continue operating normally while ignoring  the incoming data bytes.  while the mce bit setting has no effect in mode 0, it c an be used in mode 1 to check the validity of the stop bit.  for mode 1 reception, if mce is "1", the receive inte rrupt will be issue unless a valid stop bit is received.   

 uart(0/1)  s3c84bb/f84bb   14-12     setup procedure for multiprocessor communications  follow these steps to configure multiprocessor communications:  1.  set all s3c84bb/f84bb devices (maste rs and slaves) to uart mode 2 or 3.  2.  write the mce bit of all the slave devices to "1".  3.  the master device's transmission protocol is:    ?  first byte: the address    identifying the target    slave device (9th bit = "1")    ?  next bytes: data     (9th bit = "0")  4.  when the target slave receives the  first byte, all of the slaves are inte rrupted because the 9th data bit is "1".  the targeted slave compares the address byte to it s own address and then clears its mce bit in order to  receive incoming data. the other  slaves continue operating normally.  full-duplex multi-s3c84bb/f84bb interconnect . . .     txd rxd master s3c84bb/f84bb     txd rxd slave 1 s3c84bb/f84bb     txd rxd slave 2 s3c84bb/f84bb     txd rxd slave n s3c84bb/f84bb   figure 14-10. connection example for mult iprocessor serial data communications     

 s3c84bb/f84bb    10-bit a/d converter    15-1     10-bit a/d converter   overview  the 10-bit a/d converter (adc) module uses successive approximation logic to convert analog levels entering at  one of the eight input channels to equivalent 10-bit digital values. the analog input level must lie between the  av ref  and av ss  values. the a/d converter has the following components:  ?  analog comparator with successive approximation logic  ?  d/a converter logic (resistor string type)  ?  adc control register, adacon (set 1, bank 1, f7h, read/write, but adcon.3 is read only)  ?  eight multiplexed analog data input pins (adc0?adc7)  ?  10-bit a/d conversion data output register (addatah, addatal)  ? internal av ref  and av ss    function description  to initiate an analog-to-digital conversion procedure, at first, you must configure p7.0?p7.7 to analog input before  a/d conversions because the p7.0 ? p7.7 pins can be used alternatively as normal data input or analog input pins.  to do this, you load the appropriate value to the p7con.0 ? p7con.7 (for adc0 ? adc7) register.  and you write the channel selection data in the a/d converter control register adacon to select one of the eight  analog input pins (adcn, n = 0?7) and set the conversion start or enable bit, adacon.0.   an 10-bit conversion operation can be performed for only one analog input channel at a time.  the read-write adacon register is located in set 1, bank 1 at address f7h.  during a normal conversion, adc logic initially sets the successive approximation register to 200h (the  approximate half-way point of an 10-bit register). this register is then updated automatically during each  conversion step. the successive approximation block performs 10-bit conversions for one input channel at a time.  you can dynamically select different channels by manipulating the channel selection bit value (adacon.6?4) in  the adacon register.   to start the a/d conversion, you should set the enable bit, adacon.0. when a conversion is completed,  adacon.3, the end-of-conversion (eoc) bit is automatically set to 1 and the result is dumped into the addatah,  addatal registers where it can be read. the adc module enters an idle state. remember to read the contents  of addatah and addatal before another conversion starts. otherwise, the previous result will be overwritten by  the next conversion result.   note  because the adc does not use sample-and-hold circuitry, it is important that any fluctuations in the analog  level at the adc0?adc7 input pins during a conversion procedure be kept to an absolute minimum. any  change in the input level, perhaps due to circuit noise, will invalidate the result.  

 10-bit a/d converter    s3c84bb/f84bb  15-2    a/d converter control register (adacon)  the a/d converter control register, adacon, is located in set1, bank 1 at address f7h. adacon is read-write  addressable using 8-bit instructions only. but eoc bit, adacon.3 is read only. adacon has four functions:  ?  bits 6?4 select an analog input pin (adc0?adc7).  ?  bit 3 indicates the end of conversion status of the a/d conversion.  ?  bits 2?1 select a conversion speed.  ?  bit 0 starts the a/d conversion.  only one analog input channel can be selected at a time. you can dynamically select any one of the eight analog  input pins, adc0?adc7 by manipulating the 3-bit value for adacon.6?adacon.4   a/d start or enable bit 0 = disable operation 1  =  start operation a/d, d/a converter control register (adacon) f7h, set 1, bank 1, r/w (adcon.3 bit is read-only) .7 .6 .5 .4 .3 .2 .1 .0 msb lsb end-of-conversion bit (read only): 0 = conversion not complete 1 = conversion complete a/d input pin selection bits: a/d input pin clock selection bit: .4 .5 000 001 010 011 100 101 110 111 adc0 adc1 adc2 adc3 adc4 adc5 adc6 adc7 conversion clock .1 .2 0 1 0 1 0 0 1 1 fxx/16 fxx/8 fxx/4 fxx .6 d/a start or enable bit 0 = disable operation 1 = start operation   figure 15-1. a/d converter control register (adacon) 

 s3c84bb/f84bb    10-bit a/d converter    15-3   conversion data register high byte (addatah) f8h, set 1, bank 1, read only lsb msb.7.6.5.4.3.2.1.0 conversion data register low byte (addatal) f9h, set 1, bank 1, read only lsb msbxxxxxx.1.0   figure 15-2. a/d converter data register (addatah, addatal)  input pins adc0-adc7 (p7.0-p7.7) 10-bit result is loaded into a/d conversion data register to adacon.3 (eoc flag) av ref av ss analog comparator adacon.4-.6 (select one input pin of the assigned) adacon.0 (ad/c enable) adacon.0 (a/d conversion enable) adacon.2-.1 m u l t i p l e x e r + - clock selector successive approximation logic 10-bit d/a converter conversion result (addatah,addatal) to data   figure 15-3. a/d converter circuit diagram 

 10-bit a/d converter    s3c84bb/f84bb  15-4    internal reference voltage levels  in the adc function block, the analog input voltage level is compared to the reference voltage. the analog input  level must remain within the range av ss  to av ref  (usually av ref    =  v dd ).  different reference voltage levels are generated internally along the resistor tree during the analog conversion  process for each conversion step. the reference voltage level for the first bit conversion is always 1/2 av ref .    conversion timing   the a/d conversion process requires 4 steps (4 clock edges) to convert each bit and 10 clocks to step-up a/d  conversion. therefore, total of 50 clocks is required to complete a 10-bit conversion. with a 10 mhz cpu clock  frequency, one clock cycle is 400 ns (4/fxx). if each bit conversion requires 4 clocks, the conversion rate is  calculated as follows:  4 clocks/bit x 10-bits + step-up time (10 clock) = 50 clocks  50 clock x 400 ns = 20   s at 10 mhz, 1 clock time = 4/fxx  50 adc clock 	   40 clock 

      	 addatah (8-bit) + addatal (2-bit)       ! " # 	  $
$  % &   figure 15-4. a/d converter timing diagram    

 s3c84bb/f84bb    10-bit a/d converter    15-5   internal a/d conversion procedure  1.  analog input must remain between the voltage range of av ss  and av ref .  2.  configure p7.0?p7.7 for analog input before a/d conversions. to do this, you load the appropriate value to the  p7con (for adc0?adc7) register.  3.  before the conversion operation starts, you must first select one of the eight input pins (adc0?adc7) by  writing the appropriate value to the adacon register.  4.  when conversion has been completed, (50 clocks have elapsed), the eoc, adacon.3 flag is set to "1", so  that a check can be made to verify that the conversion was successful.  5.  the converted digital value is loaded to the output register, addatah (8-bit) and addatal (2-bit), then the  adc module enters an idle state.  6.  the digital conversion result can now be read from the addatah and addatal register.  reference voltage input analog input  note: the symbol "r1" signifies an offset resistor with a value of from 50 to 100  ? .                  if this resistor is omitted, the absolute accuracy will be maximum of 3lsbs. c1=10  f, c2=100 to 1000pf, c3=100 to 1000pf, r1=50 to 100 ? , r2=10 to 1k ? . s3c84bb/ f84bb adc0-adc7 av ref r1 v dd av ss c2 c1 r2 c3 v ss   figure 15-5. recommended a/d converter circuit for highest absolute accuracy     

 10-bit a/d converter    s3c84bb/f84bb  15-6         programming tip ? configuring a/d converter    �   �   sb0    ld    p7con,#11111111b  ;   p7.7?p7.0 a/d input mode    �   �      sb1    ld    adacon,#00000001b  ;   channel adc0, conversion start   ad0_chk:  tm   adacon,#00001000b  ;   a/d conversion end ?    eoc check     jr    z, ad0_chk    ;   no        ld    ad0bufh,addatah  ;   8-bit conversion data     ld    ad0bufl,addatal  ;   2-bit conversion data    sb0   �   �      sb1    ld    adacon,#00110001b  ;   channel ad3, fxx/16, conversion start   ad3_chk:  tm   adacon,#00001000b  ;   a/d conversion end ?    eoc check     jr  z,ad3_chk  ;  no      ld    ad3bufh,addatah  ;   8-bit conversion data     ld    ad3bufl,addatal  ;   2-bit conversion data    sb0   �   �     

 s3c84bb/f84bb    8-bit d/a converter    16-1     8-bit d/a converter   overview  the s3c84bb/f84bb has 8-bit digital-to-analog converter with r-2r structure. this dac(digital-to-analog) is  used to generate analog voltage, v da , with 256 steps(2 8 ) the function is controlled by adacon. to enable the  converter, the adacon.7 must be set to?1?. to generate analog voltage(v da ), load the appropriate value to  dadata. the level of analog voltage is determined by dadata.  ?  d/a converter logic (resistor string type)  ?  8-bit d/a conversion data register, dadata (set 1, bank1, f6h, read/write)   

 8-bit d/a converter    s3c84bb/f84bb  16-2    d/a converter control register (adacon)  the digital-to-analog converter (dac) control register, adacon, is a 8-bit register located at f7h (set1, bank1).  adacon register controls to enable or disable the digital-to-analog converter (dac).  a/d start or enable bit 0 = disable operation 1  =  start operation a/d, d/a converter control register (adacon) f7h, set 1, bank 1, r/w (adcon.3 bit is read-only) .7 .6 .5 .4 .3 .2 .1 .0 msb lsb end-of-conversion bit (read only): 0 = conversion not complete 1 = conversion complete a/d input pin selection bits: a/d input pin clock selection bit: .4 .5 000 001 010 011 100 101 110 111 adc0 adc1 adc2 adc3 adc4 adc5 adc6 adc7 conversion clock .1 .2 0 1 0 1 0 0 1 1 fxx/16 fxx/8 fxx/4 fxx .6 d/a start or enable bit 0 = disable operation 1 = start operation   figure 16-1. d/a converter control register (adacon)    d/a converter data register (dadata)  dadata, is a 8-bit read and write register located at f6h (set1, bank1). the dadata specifies the digital data to  generate analog voltage. adacon values are set to logic ?0? following reset and the value disable dac.  conversion data register byte (dadata) f6h, set 1, bank 1, r/w lsb msb.7.6.5.4.3.2.1.0   figure 16-2. d/a converter data register (dadata)  these are the values be determined by setting just one-bit of dadata.0-dadata.7. the other values of daout  can be obtained with superimposition. 

 s3c84bb/f84bb    8-bit d/a converter    16-3   block diagram  dadata  .0 .1 .2 .3 .4 .5 .6 .7 2r 2r 2r 2r 2r 2r 2r 2r 2r daout r rrrr rr adacon.7   figure 16-3. d/a converter circuit diagram    table 16-1. dadata setting to generate analog voltage  dadata7 dadata6 dadata5 dadata4 dadata3 dadata2 dadata1 dadata0 v daout   0 0 0 0 0 0 0 0 0  1 0 0 0 0 0 0 0 vdd/2 1   0 1 0 0 0 0 0 0  vdd/2 2   0 0 1 0 0 0 0 0  vdd/2 3   0 0 0 1 0 0 0 0  vdd/2 4   0 0 0 0 1 0 0 0  vdd/2 5   0 0 0 0 0 1 0 0  vdd/2 6   0 0 0 0 0 0 1 0  vdd/2 7   0 0 0 0 0 0 0 1  vdd/2 8    

 8-bit d/a converter    s3c84bb/f84bb  16-4     notes   

 s3c84bb/f84bb    pattern generation module     17-1     pattern generation module  overview  pattern generation flow  you can output up to 8-bit through p0.0-p0.7 by tracing the following sequence. first of all, you have to change the  pgdata into what you want to output. and then you have to set the pgcon to enable the pattern generation  module and select the triggering signal. from now, bits of pgdata are on the p0.0-p0.7 whenever the selected  triggering signal occurs.   write pattern data to pgdata triggering signal selection: pgcon.3-.0 triggering signal generation data output through p0.0-p0.7   figure 17-1. pattern generation flow 

 pattern generation module    s3c84bb/f84bb  17-2     bit3: 0 = no effect         1 = s/w trigger start (auto clear) pattern generation module control register (pgcon) feh, set 1, bank 1, r/w msb.7.6.5.4.3.2.1.0 not used bit2: 0 = pg operation disable         1 = pg operation enable pg operation mode selection bit 00 01 10 11 timer a match signal triggering timer b underflow signal triggering timer 1(0) match signal triggering s/w triggering mode   figure 17-2. pg control register (pgcon)  .7 .6 .5 .4 .3 .2 .1 .0 pg buffer pgdata (set 1, bank 1, ffh) s/w timer a match signal timer b underflow signal timer 1(0) match signal p0.7 p0.6 p0.5 p0.4 p0.3 p0.2 p0.1 p0.0 .7 .6 .5 .4 .3 .2 .1 .0   figure 17-3. pattern generation circuit diagram   

 s3c84bb/f84bb    pattern generation module     17-3        programming tip ? using the pattern generation    org 0000h     org 0100h  initial:   sb0    ld  sym,#00h  ;  disable global interrupt    sym    ld  imr,#01h  ;  enable irq0 interrupt     ld  sph,#0h  ;  high byte of stack pointer    sph    ld  spl,#0ffh  ;  low byte of stack pointer    spl   ld btcon,#10100011b ; disable watch-dog   ld clkcon,#00011000b ; non-divided       ld  p0con,#11111111b  ;  enable pg output     ei  main:   nop   nop    sb1  ld  pgdata,#10101010b  ;   setting pattern data  or  pgcon,#00001111b  ;  triggering then pattern data are output  sb0    nop  nop     jr t,main     .end     

 pattern generation module    s3c84bb/f84bb  17-4     notes     

 s3c84bb/f84bb     embedded flash memory interface    18-1   18   embedded flash memeory interface   overview  the S3F84BB has an on-chip flash eeprom instead of ma sked rom. the flash eeprom is accessed by serial  data format and the type of a full flash, that is, a user  can program the data in a flash memory area any time you  wants. the flash eeprom endurance is 100 cycles  for erase/program operation. the S3F84BB?s embedded  64k-byte memory has several operating features below:  the S3F84BB has 6 pins used to read/write the flas h memory, vdd/vss, reset, test, sdat and sclk. the  flash memory control block suppor ts two kinds of program mode:    ?  tool program mode    ?  user program mode  tool program mode  the 6 pins are connected to a programming tool and pr ogrammed by serial otp/mtp tools (spw2plus single  programmer, or gw-pro2 gang programmer). the 12.5v progr amming power is supplied into the vpp (test) pin.  the other modules except flash eepr om module are at a reset state.  this mode doesn?t support sector erase but chips eras e and two protection modes (hard lock protection/ read  protection).  user program mode   this mode supports sector er ase and two protection modes.  the S3F84BB has the pumping circuit internally, therefore,  12.5v into vpp (test) pin is not needed. to program a  flash memory in this mode several control registers  will be used, refer to page 18-2. during programming/erasing  flash memory, cpu will be held (30us) automatically.  two signals, sclk, sdat should be made in user pr ogram mode by using fsclk and fsdat bit in fmcon  register (address fdh in set1, bank1)  in order to program a flash memory.  there are three kind functions ? sector erase, progra mming, option sector programming in user program mode.  serial interface protocol format  serial interface protocol format  consist of 3-byte address field and two and more byte data field.  in the 1st byte of address field, 4-bits are assigned for  serial interface mode, the other 4-bits are assigned for  address extension. (see figure 18-4, and 18-5)  data valid status of sclk: high  data invalid status of sclk: low  start condition   : sclk = high, and sdat = positive edge   stop condition     : sclk = high, and sdat = negative edge 

 embedded flash memory interface     s3c84bb/f84bb  18-2    table 18-1. command in user program mode  ?  1st byte  2nd byte  3rd byte  ?  mode  reg/  memb  mode  (m1-m0)  address (a19-a16)  r/wb address (a15-a8)  address  (a7-a0)  data  (d7-d0)  bit n  b23  b22-b21 b20-b17 b16 b15-b8  b7-b0    available  program   mode  program 0  11b  xxxxb  0  xxh  xxh  xxh tool,user program  mode    hard lock  protection  1 11b 0000b 0/1 ---0,  1110b  --11,  1110b  ----,  --0-b  tool,user program  mode    read  protection  1 11b 0000b 0/1 ---0,  1110b  --11,  1111b  ----,  0---b  tool,user program  mode    sector  erase  0 10b xxxxb 0 xxh  xxh ----,  ----b  user  program  mode only    

 s3c84bb/f84bb     embedded flash memory interface    18-3   flash memory control registers  flash memory control register    fmcon register is available only in user program  mode to program some data to the flash memory.    flash memory control register (fmcon) fdh, set 1, bank 1, r/w lsb msb.7.6.5.4.3.2.1.0 user programming serial clock bit: 0 = fsclk is low 1 = fsclk is high user programming serial data bit: 0 = fsdat is low 1 = fsdat is high user programming mode status bit: 0 = not-user programming mode 1 = user programming mode   figure 18-1. flash memory control register (fmcon)      flash memory user programming enable register    ram address (00h) of page 8 is used as flash memory e nable register. this location can be addressed by 1-bit  or 8-bit instructions.  after reset, the user-programming mode is dis abled, because the value of fmusr is ?00000000b?.  if necessary, you can use the user programming  mode by setting the value of fmusr is ?10100101?.    flash memory user programming enable register (fmusr) 00h, page 8, r/w lsb msb .7 .6 .5 .4 .3 .2 .1 .0 flash memory user programming enable bits: 00000000 : disable user programming mode 10100101 : enable user programming mode   figure 18-2. flash memory user programming enable register (fmusr) 

 embedded flash memory interface     s3c84bb/f84bb  18-4      the program procedure in user program mode    1.   set flash memory control register  (fmcon.1) properly to access flash memory  2.  clear fsclk (fmcon.0) bit, fsdat (fmcon.7) bi t for the initialization of sclk and sdat signals  3.  enter into sector program mode with instruct ions of ?ld  pp, #88h?,?ld  00h,#0a5h? orderly.  4.  make sclk, sdat signals for start condition with  controlling fsclk, fsdat bits in fmcon register.  5.  make sclk, sdat signals for 3-byte address fiel d with controlling fsclk, and fsdat bits in fmcon  register.  6.  make sclk, sdat signals for data field with c ontrolling fsclk, and fsdat bits in fmcon register.  7.  make sclk, sdat signals for 1-byte   dummy data with controlling fsclk, and fsdat bits in fmcon  register.  8.  make sclk, sdat signals for stop condition by c ontrolling fsclk, and fsdat bits in fmcon register.  9.  release user program mode with instruction  of ?ld  pp, #88h?, and ?ld    00h, #00h? orderly.     

 s3c84bb/f84bb     embedded flash memory interface    18-5   sector erase  user can erase a flash memory par tially by using sector erase f unction only in user program mode.  the only unit of flash memory to be erased and wr itten in user program mode is called sector.  S3F84BB has 120 sectors to be erased written in flash  memory. sectors have all 512-byte sizes as program  memory areas. sector erase  is not supported in tool program modes (mds mode).   minimum 2ms to maximum 100ms delay time for erase is required after setting sector address.  (hex) ffffh 1000h sector 0 (512 byte) 4-kbyte 0000h 11ffh 0fffh not-writible in user program mode (flash program memory) writible in user program mode (flash program memory) 13ffh sector 1 (512 byte) sector 119 (512 byte) fdffh   figure 18-3. sectors in user program mode   

 embedded flash memory interface     s3c84bb/f84bb  18-6      s dummy   clk 12-789 12-789 12-789 a23 a22-a17a16 dummy   clk a15-a8 dummy   clk a7-a0 12-789 d7-d0 sdat sclk 1'st byte 2'nd byte 3'rd byte data = ffh dummy   clk 12-789 d7-d0 sdat sclk data = ffh dummy   clk sector erase delay = typ. 3ms p (dummy data for the time to write last data) lasr data = always "ff" 1st-3rd byte (address field) -010x  xxx0b, yyh, zzh the yy, zzh is a sector address   figure 18-4. sectors erase wave form   

 s3c84bb/f84bb     embedded flash memory interface    18-7     programming tip ? sector erase     sb1    clr  fmcon      ; clear register   sb0      ld    clkcon, #00h    ; cpu clock is 16-divide    loope: nop    ld    pp, #88h      ;        ld    00h,#0a5h      ; user program mode enable    ld  pp,#00h    ;       sb1    ent:  or   fmcon,#00000010b    ; flag enable    tm   fmcon,#00000010b    ; flag check   jr  z, ent   sb0    spgm: sb1      ; start   or  fmcon,#00000001b  ; sclk=1   or  fmcon,#10000000b  ; sdat=1   sb0      ld    r8,#01000000b    ; 1?st byte (sector erase mode)   call pgm    ld    r8,#00010000b    ; 2nd byte, address=1000h (sector 0)   call pgm    ld    r8,#00000000b    ; 3rd byte   call pgm      ld    r15,#0ebh      ; delay for typical 3ms when 10mhz oscillator used  delay:  djnz  r15,delay                           ; ((1/(10mhz/16))x8cycle) x 235 = 3.008 [ms]       ld    r8,#0ffh      ; dummy data   call pgm     sb1   and fmcon,#01111111b  ; sdat=0    and  fmcon,#11111110b    ; sclk=0, stop   sb0     ld pp,#88h    ld  00h,#00h      ; user program mode disable   ld pp,#00h    

 embedded flash memory interface     s3c84bb/f84bb  18-8      programming tip ? sector erase (continued)     sb1    rel:  and  fmcon,#11111101b    ; flag disable    tm   fmcon,#00000010b    ; flag check   jr  nz, rel   sb0     jp end_sym   ; end    pgm: sb1   and fmcon,#11111110b  ; sclk=0     call wait      ld  r9, #08h      ; rotate time    pgmb:  rl  r8      ; msb -> lsb    ldb  fmcon.7,r8      ; fmcon.7   ?  r8.0   or fmcon,#00000001b  ; sclk=1   and fmcon,#11111110b  ; sclk=0   djnz r9, pgmb      or fmcon,#10000000b  ; sdat=1   or fmcon,#00000001b  ; sclk=1   sb0   ret    wait: nop   nop    ld  r15, #0ffh      ; 00h   s3c84bb/f84bb     embedded flash memory interface    18-9   programming   a flash memory is programmed in  one byte unit after sector erase.  the write operation of programming starts at a falli ng edge of dummy clock when a start address and data have  been transmitted, and finishes at a falling edge  of last sclk for next data transmission.  the next data to write is transmitted during the previous dat a is writing. so, S3F84BB has  8-bit buffer register to  write data to flash cell and shift register  to receive the next data to be written.  the address of next data increments aut omatically at a dummy clock afte r previous data has been transmitted.  dummy data (ffh) is required after transmission of the last  data because the time to write the last data to flash  cell is needed.  programming finished when stop condition occurs  after the dummy clock has been transmitted.  s dummy   clk 12-789 12-789 12-789 a23 a22-a17a16 dummy   clk a15-a8 dummy   clk a7-a0 12-789 d7-d0 sdat sclk 1'st byte 2'nd byte 3'rd byte data dummy   clk 12-789 d7-d0 sdat sclk data = ffh dummy   clk p (dummy data for the time to write last data) lasr data = always "ff" 12-789 12-789 dummy   clk d7-d0 d7-d0 data + n data + n +1   figure 18-5. program wave form 

 embedded flash memory interface     s3c84bb/f84bb  18-10      programming tip ? programming     sb1    clr  fmcon      ; clear register   sb0      ld    clkcon, #00h    ; cpu clock is 16-divide    loope: nop    ld    pp, #88h      ;        ld    00h,#0a5h      ; user program mode enable    ld  pp,#00h    ;       sb1    ent:  or   fmcon,#00000010b    ; flag enable    tm   fmcon,#00000010b    ; flag check   jr  z, ent   sb0    spgm: sb1      ; start   or  fmcon,#00000001b  ; sclk=1   or  fmcon,#10000000b  ; sdat=1   sb0      ld    r8,#01100010b    ; 1?st byte (programming mode)   call pgm    ld    r8,#00010000b    ; 2nd byte, address=1000h (sector 0)   call pgm    ld    r8,#00000000b    ; 3rd byte   call pgm      ld    r3, #00h      ; write address = 1000h ~ 10ffh  adr:  ld    r8, #66h      ; write data = 66h   call pgm   inc  r3   jr nz, adr      ld    r8,#0ffh      ; dummy data   call pgm     sb1   and fmcon,#01111111b  ; sdat=0    and  fmcon,#11111110b    ; sclk=0, stop   sb0     ld pp,#88h    ld  00h,#00h      ; user program mode disable   ld pp,#00h    

 s3c84bb/f84bb     embedded flash memory interface    18-11     programming tip ? programming (continued)     sb1    rel:  and  fmcon,#11111101b    ; flag disable    tm   fmcon,#00000010b    ; flag check   jr  nz, rel   sb0      jp end_sym   ; end    pgm: sb1   and fmcon,#11111110b  ; sclk=0     call wait      ld  r9, #08h      ; rotate time    pgmb:  rl  r8      ; msb -> lsb    ldb  fmcon.7,r8      ; fmcon.7   ?  r8.0   or fmcon,#00000001b  ; sclk=1   and fmcon,#11111110b  ; sclk=0   djnz r9, pgmb      or fmcon,#10000000b  ; sdat=1   or fmcon,#00000001b  ; sclk=1   sb0   ret    wait: nop   nop    ld  r15, #0ffh      ; 00h   embedded flash memory interface     s3c84bb/f84bb  18-12    data protection  option sector programming (protection option in user programming mode)    user program mode can support hard lock protection  and read protection when they have not been selected in  tool program mode yet. the data programmed by a user  flash memory need to be protected at the fields of  application.  the flash memory control block in the s3f84 bb protects the data with two protection modes:    -  hardware protection (hard lock protection)  -  read protection    these protection modes can be enabled by the option sele ction at a tool program mode or setting the smart  option at a user program mode.  hardware protection (hard lock protection)  if this function is enable user or any  other thing cannot write and erase the  data in a flash memory area. hard  lock function can be set up in the tool program mode as  well as a user program mode.  besides this protection  could be released (cleared) by the chip er ase execution at a tool program mode.  read protection  there are many users who do not want their code data to  be read by any others. read protection solves this  matter by preventing the flash data from being read serially  at a tool program mode and is no effective at a user  program mode. when this function is enable reading or verify ing the flash data at a tool program mode results in  zero read out. read protection can be released (cleared) by  the chip erase execution at a tool program mode.  notes;   1.  to enable hard lock protection, set the data of  address 0e3eh to ?00h? in user program mode.  2.  to enable read protection, set the data of addr ess 0e3fh to ?00h? in user program mode.       

 s3c84bb/f84bb     embedded flash memory interface    18-13     programming tip ? option sector programming  (hard lock protection in user program mode)     sb1    clr  fmcon      ; clear register   sb0      ld    clkcon, #00h    ; cpu clock is 16-divide    loope: nop    ld    pp, #88h      ;        ld    00h,#0a5h      ; user program mode enable    ld  pp,#00h    ;       sb1    ent:  or   fmcon,#00000010b    ; flag enable    tm   fmcon,#00000010b    ; flag check   jr  z, ent   sb0    spgm: sb1      ; start   or  fmcon,#00000001b  ; sclk=1   or  fmcon,#10000000b  ; sdat=1   sb0      ld    r8,#11100000b    ; 1?st byte (hard lock protection mode)   call pgm    ld    r8,#00001110b    ; 2nd byte=0e3eh   call pgm    ld    r8,#00111110b    ; 3rd byte   call pgm      ld    r8,#00h      ; data = 00h(hard lock data)   call pgm      ld    r8,#0ffh      ; dummy data   call pgm     sb1   and fmcon,#01111111b  ; sdat=0    and  fmcon,#11111110b    ; sclk=0, stop   sb0     ld pp,#88h    ld  00h,#00h      ; user program mode disable   ld pp,#00h    

 embedded flash memory interface     s3c84bb/f84bb  18-14      programming tip ? option sector progra mming (hard lock protection - continued)     sb1    rel:  and  fmcon,#11111101b    ; flag disable    tm   fmcon,#00000010b    ; flag check   jr  nz, rel   sb0      jp end_sym   ; end    pgm: sb1   and fmcon,#11111110b  ; sclk=0     call wait      ld  r9, #08h      ; rotate time    pgmb:  rl  r8      ; msb -> lsb    ldb  fmcon.7,r8      ; fmcon.7   ?  r8.0   or fmcon,#00000001b  ; sclk=1   and fmcon,#11111110b  ; sclk=0   djnz r9, pgmb     or fmcon,#10000000b  ; sdat=1   or fmcon,#00000001b  ; sclk=1   sb0   ret    wait: nop   nop    ld  r15, #0ffh      ; 00h   s3c84bb/f84bb  electrical data     19-1  19   electrical data   overview  in this chapter, s3c84bb/f84bb  electrical characteristics are  presented in tables and graphs.   the information is arranged in the following order:  ?  absolute maximum ratings    ? input/output capacitance  ?  d.c. electrical characteristics  ?  a.c. electrical characteristics  ? oscillation characteristics  ?  oscillation stabilization time  ?  data retention supply voltage in stop mode  ?  a/d converter electrical characteristics     

 electrical data    s3c84bb/f84bb  19-2     table 19-1. absolute maximum ratings  (t a = 25   c)  parameter symbol  conditions  rating unit supply voltage  v dd     ? 0.3  to  +6.5  v  input voltage  v i     ? 0.3  to  v dd   + 0.3    output voltage  v o     ? 0.3  to  v dd  + 0.3    output current high  i oh   one i/o pin active  ? 18  ma      all i/o pins active  ? 60    output current low  i ol   one i/o pin active  +30        total pin current for port   +100    operating temperature  t a     ? 40  to  + 85  storage temperature  t stg     ? 65  to  + 150   c  table 19-2. d.c. electrical characteristics  (t a    =  -25    c to  + 85   c, v dd   =  2.7 v  to  5.5 v)  parameter symbol  conditions  min  typ max unit  operating voltage  v dd  f cpu  = 10 mhz   2.7 ? 5.5 v  input high voltage  v ih1   all input pins except v ih2  0.8 v dd   ?  v dd       v ih2  x in  v dd -0.5   v dd     input low voltage  v il1   all input pins except v il2    ? ?  0.2 v dd       v il2  x in   ?  0.4    

 s3c84bb/f84bb  electrical data     19-3  table 19-2. d.c. electrical  characteristics (continued)  (t a   = -25    c to + 85    c, v dd  = 2.7 v to 5.5 v)  parameter symbol  conditions  min typ max unit output high voltage  v oh1  v dd   = 5 v;  i oh  =  -1 ma  all output pins except   port 0,2,6  v dd  ? 1.0 ? ? v    v oh2  v dd   = 5 v;  i oh  =  -4 ma  port 0,2  v dd  ? 2.0     output low voltage  v ol1  v dd   = 5 v;   i ol   = 2 ma  all output pins except   port 0,2,6  ? 0.12 2.0     v ol2  v dd   = 5 v;   i ol   = 15 ma  port 0,2,6   0.6 2.0   input high leakage   current  i lih1  v in  = v dd   all input pins except i lih2   ? ? 3   a    i lih2  v in  = v dd   x in     20   input low leakage   current  i lil1  v in   = 0 v  all input pins except i lil2   ? ? -3     i lil2  v in   = 0 v  x in      -20   output high leakage  current  i loh  v out   = v dd   all i/o pins and output pins  ? ? 5   output low leakage  current  i lol  v out   = 0 v  all i/o pins and output pins  ? ? -5   pull-up resistor   r l1   v in   = 0 v; v dd   = 5 v   10 %  port  0?8, t a  = 25  c  30 46 80  k ?     r l2   v in   = 0 v; v dd  = 5 v   10%  reset only, t a =25   c  120 240 320  

 electrical data    s3c84bb/f84bb  19-4     table 19-2. d.c. electrical  characteristics (concluded)  (t a   = -25   c to + 85   c, v dd  = 2.7 v to 5.5 v)  parameter symbol  conditions  min typ max unit supply current   (1)   i dd1  v dd   = 5 v    10 %  10 mhz crystal oscillator  ? 8.5 20 ma    i dd2   idle mode: v dd  = 5 v    10 %  10 mhz crystal oscillator   2.5 5     i dd3   stop mode: v dd   = 5 v    10 %  t a   = 25   c   1 3   a  notes:  1.  supply current does not include current  drawn through internal pull-up resistor s or external output current loads.     

 s3c84bb/f84bb  electrical data     19-5  table 19-3. a.c. electrical characteristics  (t a   = -25    c to +85    c, v dd  = 2.7 v  to  5.5 v)  parameter symbol  conditions  min  typ  max  unit  interrupt input  high, low width  (p4.0?p4.7)  (p8.5, p8.6)  t inth ,  t intl   v dd  = 5 v  180 ?  ?  ns  reset input low  width  t rsl  v dd  = 5 v  1.0 ?  ?   s  note:   user must keep more large value then min value.  t intl 0.8 v dd 0.2 v dd t inth 0.2 v dd   figure 19-1. input timing for external inte rrupts (ports 4, port 8.5, port 8.6)  reset t rsl 0.2 v dd   figure 19-2. input timing for reset 

 electrical data    s3c84bb/f84bb  19-6     table 19-4. input/output capacitance  (t a   = -25    c to +85    c, v dd  =   0 v )  parameter symbol  conditions  min  typ  max  unit  input  capacitance  c in   f = 1 mhz; unmeasured pins  are tied to v ss   ? ? 10 pf  output  capacitance  c out          i/o capacitance  c io          table 19-5. data retention supply voltage in stop mode  (t a  = -25    c to + 85    c)  parameter symbol  conditions  min  typ  max  unit  data retention  supply voltage   v dddr   stop mode   2 ? 5.5   v  data retention  supply current  i dddr  v dddr   = 2.0 v, stop mode    ? ? 3   a  execution of stop instrction reset occurs ~ ~ v dddr ~ ~ stop mode oscillation stabilization time normal operating mode data retention mode t wait reset v dd note: t wait  is the same as 4096 x 16 x 1/f osc 0.2 v dd   figure 19-3. stop mode release timing initiated by reset   

 s3c84bb/f84bb  electrical data     19-7  execution of stop instruction ~ ~ v dddr ~ ~ stop mode idle mode data retention mode t wait v dd interrupt normal operating mode oscillation stabilization time 0.2 v dd note: t wait  is the same as 4096 x 16 x bt  clock   figure 19-4. stop mode release timing initiated by interrupts 

 electrical data    s3c84bb/f84bb  19-8     table 19-6. a/d converter electrical characteristics  (t a   = - 25    c to +85   c, v dd   =  2.7 v  to  5.5 v, v ss  =  0 v)  parameter symbol  conditions  min typ max unit  resolution    ? 10 ? bit  total accuracy     v dd       =  5.12 v  ? ?   3  integral linearity error  ile  av ref   =  5.12v  ? ?   2  differential linearity  error  dle  av ss     = 0 v  fxx = 10 mhz  ? ?   1  offset error of top  eot    ?   1   3  offset error of bottom  eob    ?   0.5   2  lsb  conversion time  (1)   t con   10-bit resolution  50 x 4/fxx, fxx = 10mhz  20 ?  ?   s  analog input voltage  v ian   ?  av ss   ?  av ref   v  analog input impedance  r an   ? 2 1000 ?  m ?   analog reference voltage  av ref   ? 2.5 ?  v dd   v  analog ground  av ss   ?  v ss   ?  v ss  +0.3   analog input current  i adin  av ref  = v dd  = 5v  ? ? 10   a  analog block current  (2)   i adc  av ref  = v dd  = 5v  ? 1 3     av ref  = v dd  = 3v   0.5 1.5  ma     av ref  = v dd  = 5v            when power down mode   100 500 na  notes:   1.  'conversion time' is the time required from t he moment a conversion operat ion starts until it ends.  2. i adc  is an operating current  during a/d conversion.  table 19-7. d/a converter electrical characteristics  (t a   = - 25    c to +85   c, v dd   =  2.7 v  to  5.5 v, v ss  =  0 v)  parameter symbol  conditions  min typ max unit  resolution ? ? ? ? 8 bits  absolute accuracy  ?    ? 3  ?  3  lsb  differential linearity  error  dle   ? 1  ?  1  lsb  setup time  t su    ? ? 5   s  output resistance  r o    4.5  5  5.5  k ?  

 s3c84bb/f84bb  electrical data     19-9  table 19-8. flash memory d.c. electrical characteristics  (t a   = - 25    c to +85   c, v dd   =  2.7 v  to  5.5 v, v ss  =  0 v)  parameter symbol  conditions  min typ max unit  logic power supply  v dd     2.7 5.0 5.5  v  f dd1  v dd   =  2.7 v  to  5.5 v  during reading  ? 40 80 ma  f dd2  v dd   =  2.7 v  to  5.5 v  during programming  ? 40 80 ma  flash memory  operating current  (f dd )  f dd3  v dd   =  2.7 v  to  5.5 v  during erasing  ? 40 80 ma    table 19-9. flash memory a.c. electrical characteristics  (t a   = - 25    c to +85   c, v dd   =  2.7 v  to  5.5 v, v ss  =  0 v)  parameter symbol  conditions  min typ max unit  programming time (1)   ftp 20 30 300 us  chip erasing time (2)   ftp1 ? ? 10 ms  sector erasing time (3)   ftp2 ? 2  ms  data access time  ft rs   v dd   =  2.7 v  to  5.5 v  ? 50 ? ms  number of  writing/erasing  fnwe ?  ? 100  times  notes:   1.  the programming time is the time dur ing which one byte(8-bit) is programmed.  2.  the chip erasing time is the time  during which all 64k-byte block is erased.  3.  the sector erasing time is the time  during which all 60k-byte block is erased.     

 electrical data    s3c84bb/f84bb  19-10     table 19-10. main oscillator frequency (f osc1 )   (t a   =  -25    c to +85   c, v dd    = 2.7 v  to  5.5 v)  oscillator  clock circuit  test condition  min  typ  max  unit  crystal  x in c1 c2 x out   crystal  oscillation frequency 1  ?  10  mhz  ceramic  x in c1 c2 x out   ceramic oscillation  frequency  1 ? 10   external clock  x in x out   x in  input frequency  1 ? 10   table 19-11. main oscillator clock stabilization time (t st1 )  (t a   = -25    c to +85    c, v dd  = 2.7 v to 5.5 v)  oscillator test condition min typ max unit  crystal ? ? 10 ms  ceramic  v dd   =  2.7 v  to  5.5 v  stabilization occurs when v dd  is equal to the minimum  oscillator voltage range.  ? ? 4    external clock  x in  input high and low level width (t xh , t xl )  50 ?  ? ns  note:   oscillation stabilization time (t st1 ) is the time required for the cpu clo ck to return to its normal oscillation      frequency after a power-on occurs, or when stop mode is ended by a reset signal.     

 s3c84bb/f84bb  electrical data     19-11  x in t xh t xl 1/f osc1 v dd  - 0.5 v 0.4 v   figure 19-5. clock timing measurement at x in  12 mhz 4 mhz 1 mhz 567 supply voltage (v) minimum instruction clock = 1/4 x oscillator frequency 5.5 10 mhz 3.3 a b 4 3 2.7 1 f cpu mask type/ flash type   figure 19-6. operating voltage range   

 electrical data    s3c84bb/f84bb  19-12     notes       

 s3c84bb/f84bb  mechanical data    20?1     mechanical data   note :  dimensions are in millimeters. 17.90  ?0.3 14.00  ?0.2 (1.00) 80-qfp-1420c 23.90  ?0.3 #80 (0.80) #1 0.35  ?0.1   0.15 max 0.80  ?0.20 0.10 max 0.15 +0.10  - 0.05 0~8  2.65  ?0.10 3.00 max 0.05 min 0.80  ?0.20 20.00  ?0.2 0.80   figure 20?1.  s3c84bb/f84bb 80-qfp standard package dimension (in millimeters) 

 mechanical data    s3c84bb/f84bb  20?2    not e :  dimensions are in millimeters. 14.0 0bsc 12.00bsc 80-tqfp-1212-an 14.00bsc 12.00bsc #80 (1.25) #1 0.50 0.17~0.27 0.65   0.15 0.10 max 0.09~0.20 0~7 1.00   0 .05 1.20 max 0.05~0.15 0.25gauge plane   0.08 max  m   figure 20?2.  s3c84bb/f84bb 80-tqfp standard package dimension (in millimeters) 

 s3c84bb/f84bb  development tools     21-1    development tools  overview  samsung provides a powerful and easy-to-use development support system in turnkey form. the development  support system is configured with a host system, debugging tools, and support software. for the host system, any  standard computer that operates with win95/98/2000 as its operating system can be used. one type of  debugging tool including hardware and software is provided: the sophisticated and powerful in-circuit emulator,  smds2+ or sk-1000, for s3c7, s3c9, s3c8 families of microcontrollers. the smds2+ and sk-1000 is a new  and improved version of smds2. samsung also offers support software that includes debugger, assembler, and a  program for setting options.  shine  samsung host interface for in-circuit emulator, shine (smart studio in case of sk-1000), is a multi-window  based debugger for smds2+. shine provides pull-down and pop-up menus, mouse support, function/hot keys,  and context-sensitive hyper-linked help. it has an advanced, multiple-windowed user interface that emphasizes  ease of use. each window can be sized, moved, scrolled, highlighted, added, or removed completely.  sasm assembler  the sasm88 is a relocatable assembler for samsung's s3c8-series microcontrollers. the sasm88 takes a  source file containing assembly language statements and translates into a corresponding source code, object  code and comments. the sasm88 supports macros and conditional assembly. it runs on the ms-dos operating  system. it produces the relocatable object code only, so the user should link object file. object files can be linked  with other object files and loaded into memory.  sama assembler  the samsung arrangeable microcontroller (sam) assembler, sama, is a universal assembler, and generates  object code in standard hexadecimal format. assembled program code includes the object code that is used for  rom data and required smds program control data. to assemble programs, sama requires a source file and an  auxiliary definition (def) file with device specific information.  hex2rom  hex2rom file generates rom code from hex file which has been produced by assembler. rom code must be  needed to fabricate a microcontroller which has a mask rom. when generating the rom code (.obj file) by  hex2rom, the value "ff" is filled into the unused rom area up to the maximum rom size of the target device  automatically.  target boards  target boards are available for all s3c8-series microcontrollers. all required target system cables and adapters  are included with the device-specific target board.   

 development tools   s3c84bb/f84bb  21-2     smds2+ rs-232c pod probe adapter tb84bb target board ibm-pc at or compatible       prom/otp writer unit bus       ram break/display unit       trace/timer unit       sam8 base unit       power supply unit target application system eva chip   figure 21-1. smds+ product configuration (sk-1000 is single cabinet type)         

 s3c84bb/f84bb  development tools     21-3  tb84bb target board  the tb84bb target board is used for the s3c84bb/f84bb microcontroller. it is supported by the smds2,  smds2+, sk-820, or sk-1000 development system.  tb84bb sm1xxxa reset1 to user_v cc off on 40-pin connector 2 1 39 40 25 1 j101 160 qfp s3e84bb eva chip gnd v cc cn1 + stop + idle 40-pin connector 2 1 39 40 j102 external triggers ch1 ch2   	
	
     figure 21?2.  tb84bb target board configuration   

 development tools   s3c84bb/f84bb  21-4     table 21-1. power selection settings for tb84bb  "to user_v cc "  settings  operating mode  comments  to user_v cc off on   target system sk-1000/smds2+ tb84bb v cc v ss v cc   the ice (sk-1000/smds2+ )  supplies v cc  to the target  board (evaluation chip) and  the target system.  to user_v cc off on   tb84bb target system sk-1000/smds2+ external v cc v ss v cc   the ice (sk-1000/smds2+)  supplies v cc  only to the target  board (evaluation chip). the  target system must have its  own power supply.      

 s3c84bb/f84bb  development tools     21-5  table 21-2. using single header pins as the input path for external trigger sources  target board part  comments  external triggers ch1 ch2   connector from external trigger sources of the application system   you can connect an external trigger source to one of the two external  trigger channels (ch1 or ch2) only for the smds2+ breakpoint and  trace functions.    idle led  the green led is on when the evaluation chip (s3e84bb) is in idle mode.  stop led  the red  led is on when the evaluation chip (s3e84bb) is in stop mode. 

 development tools    s3c84bb/f84bb  21-6     p7.5/adc5 avref p7.3/adc3 p7.1/adc1 p6.7 p6.5 vdd2 p6.3 p6.1 p8.5/int9 p8.3 p8.1 p1.7 p1.5 p1.3 p1.1 p0.7/pg7 p0.5/pg5 p0.3/pg3 p0.1/pg1 p7.4/adc4 avss p7.2/adc2 p7.0/adc0 p6.6 vss2 p6.4 p6.2 p6.0 p8.4/int8 p8.2 p8.0 p1.6 p1.4 p1.2 p1.0 p0.6/pg6 p0.4/pg4 p0.2/pg2 p0.0/pg0 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 	

  p2.7/taout p2.5/tack p2.3/daout p2.1/si p5.7 p5.5 vss1 n.c p5.4 resetb p5.1/rxd1 p3.7/tcout1 p3.5/t1out1 p3.3/t1cap1 p3.1/t1ck1 p4.7/int7 p4.5/int5 p4.3/int3 p4.1/int1 p7.7/adc7 p2.6/tacap p2.4/tbpwm p2.2/sck p2.0/so p5.6 vdd1 n.c n.c(test) p5.3/rxd0 p5.2/txd0 p5.0/txd1 p3.6/tcout0 p3.4/t1out0 p3.2/t1cap0 p3.0/t1ck0 p4.6/int6 p4.4/int4 p4.2/int2 p4.0/int0 p7.6/adc6 1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38 40 	

  		

   figure 21?3.  40-pin connectors for tb84bb (s3c84bb, 80-qfp package)    	
 	

 
          	 	 	 !"#$# %
	
"&'' 	 

            figure 21?4.  tb84bb cable for 80-qfp adapter 

   (for duplicate copies of this form, and for additional ordering information, please contact your local     samsung sales representative. samsung sales offices are listed on the back cover of this book.)  s3c series mask rom order form  product description:   device number:   s3c84bb______- ___________(write down the rom code number)  product order form:         package        pellet               wafer   package type:  __________   package marking (check one):           standard               custom a               custom b          (max 10 chars)    (max 10 chars each line)  @ : assembly site code, y : last number of assembly year,  ww : week of assembly  @ yww device name sec device name @ yww @ yww   delivery dates and quantities:   deliverable  required delivery date  quantity  comments  rom code  ?  not applicable  see rom selection form  customer sample        risk order      see risk order sheet  please answer the following questions:         for what kind of product will you be using this order?          new product        upgrade of an existing product          replacement of an existing product           other  if you are replacing an existing product, please indicate the former product name     (     )        what are the main reasons you decided to use a samsung microcontroller in your product?    please check all that apply.          price        product quality        features and  functions          development system         technical support        delivery on time          used same micom before        quality of documentation        samsung reputation  mask charge (us$ / won):  ____________________________  customer information:  company name:  ___________________            telephone number   _________________________  signatures:  ________________________ __________________________________      (person placing the order)    (technical manager)



   (for duplicate copies of this form, and for additional ordering information, please contact your local     samsung sales representative. samsung sales offices are listed on the back cover of this book.)  s3c series  request for production at customer risk  customer information:  company name:  ________________________________________________________________  department: ________________________________________________________________  telephone number:  __________________________  fax:  _____________________________  date: __________________________  risk order information:   device number:  s3c________- ________ (write down the rom code number)  package:  number of pins:  ____________  package type:  _____________________  intended application:  ________________________________________________________________  product model number:  ________________________________________________________________  customer risk order agreement:  we hereby request sec to produce the above named product in the quantity stated below. we believe our risk  order product to be in full compliance with all sec production specifications and, to this extent, agree to assume  responsibility for any and all production risks involved.    order quantity and delivery schedule:  risk order quantity:  _____________________ pcs  delivery schedule:  delivery date (s)  quantity  comments              signatures:  _______________________________ _______________________________________                                  (person placing the risk order)                                 (sec sales representative) 



   (for duplicate copies of this form, and for additional ordering information, please contact your local    samsung sales representative. samsung sales offices are listed on the back cover of this book.)  s3c84bb mask option selection form  device number:   s3c___-________(write down the rom code number)  attachment (check one):          diskette         prom  customer checksum:  ________________________________________________________________  company name:  ________________________________________________________________  signature (engineer):  ________________________________________________________________  please answer the following questions:         application  (product model id: _______________________)         audio        video        telecom        cd databank         caller id        cd game        industrials        home appliance        office automation         remocon        other    please describe in detail its application     



   (for duplicate copies of this form, and for additional ordering information, please contact your local    samsung sales representative. samsung sales offices are listed on the back cover of this book.)  S3F84BB series flash mcu   factory writing order form (1/2)   product description:   device number:  S3F84BB__-________(write down the rom code number)  product order form:          package          pellet          wafer  if the product order form is package:  package type:     _____________________    package marking (check one):           standard            custom a            custom b          (max 10 chars)    (max 10 chars each line)  @ : assembly site code, y : last number of assembly year,  ww : week of assembly  @ yww device name sec device name @ yww @ yww   delivery dates and quantity:   rom code release date  required delivery date of device quantity      please answer the following questions:         what is the purpose of this order?          new product development        upgrade of an existing product          replacement of an existing microcontroller           other  if you are replacing an existing microcontroller, please indicate the former microcontroller name     (     )        what are the main reasons you decided to use a samsung microcontroller in your product?    please check all that apply.          price        product quality        features and  functions          development system         technical support        delivery on time          used same mcu before        quality of documentation        samsung reputation  customer information:  company name:  ___________________            telephone number   _________________________  signatures:  ________________________ __________________________________      (person placing the order)                                                     (technical manager)  



   (for duplicate copies of this form, and for additional ordering information, please contact your local    samsung sales representative. samsung sales offices are listed on the back cover of this book.)  S3F84BB flash mcu   factory writing order form (2/2)  device number:   S3F84BB__-__________ (write down the rom code number)  customer checksums:  _______________________________________________________________  company name:  ________________________________________________________________  signature (engineer):  ________________________________________________________________  read protection  (1) :                yes                                   no  please answer the following questions:         are you going to continue ordering this device?          yes          no    if so, how much will you be ordering?      _________________pcs        application  (product model id: _______________________)         audio        video        telecom        lcd databank         caller id        lcd game        industrials        home appliance        office automation         remocon        other    please describe in detail its application  ___________________________________________________________________________  notes  1.  once you choose a read protection, you cannot read again the programming code from the rom.   2.  flash mcu writing will be executed in our manufacturing site.   3.  the writing program is completely verified by a customer. samsung does not take on any responsibility for errors    occurred from the writing program.   




		


		
			

			▲Up To 
				Search▲    



		 
	
Price & Availability of S3F84BB 
	[image: ]
	
			


	


	
			
		


				
	
				All Rights Reserved © 
				IC-ON-LINE 2003 - 2022  



	



	
			[Add Bookmark] [Contact 
				Us] [Link exchange] [Privacy policy]
	
				Mirror Sites :  [www.datasheet.hk]   
				[www.maxim4u.com]  [www.ic-on-line.cn] 
				[www.ic-on-line.com] [www.ic-on-line.net] 
				[www.alldatasheet.com.cn] 
				[www.gdcy.com] 
				[www.gdcy.net]





	

	


.
.
.
.
.




		 	We use cookies to deliver the best possible 
	web experience and assist with our advertising efforts. By continuing to use 
	this site, you consent to the use of cookies. For more information on 
	cookies, please take a look at our 
	Privacy Policy.	
	X




 
 























